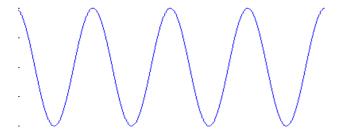
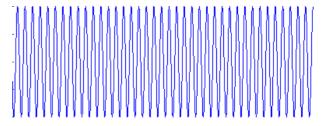
CS462 Image Processing Chapter 7 Discrete Cosine Transform and JPEG Compression

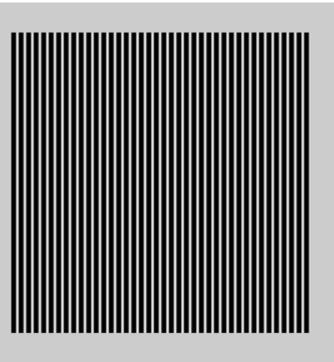
By Dr. Paween Khoenkaw Computer Science MJU

Fourier transform

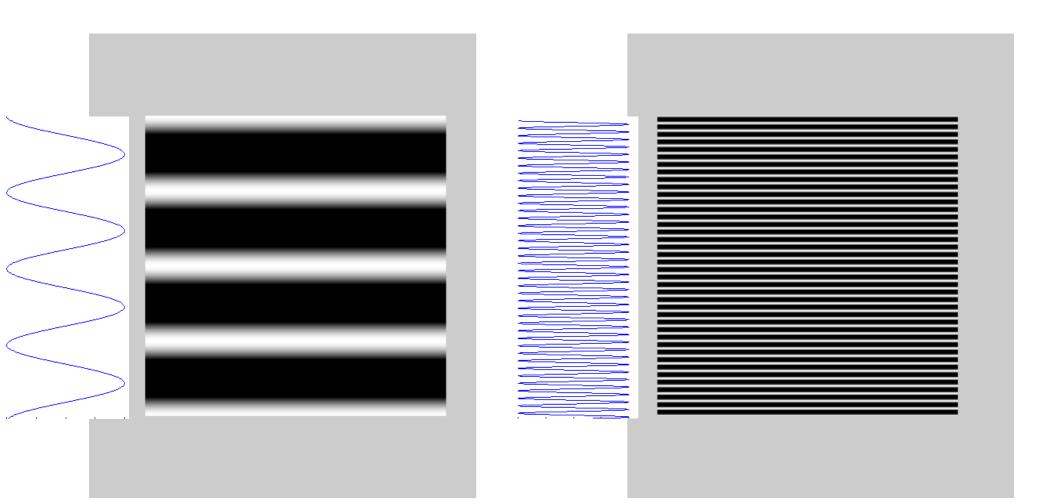


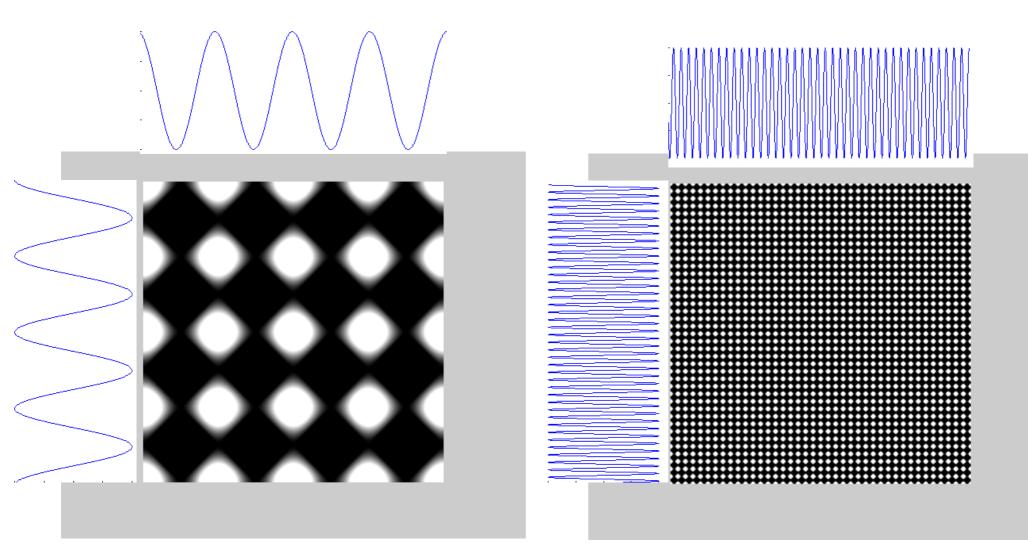

Jean-Baptiste Joseph Fourier

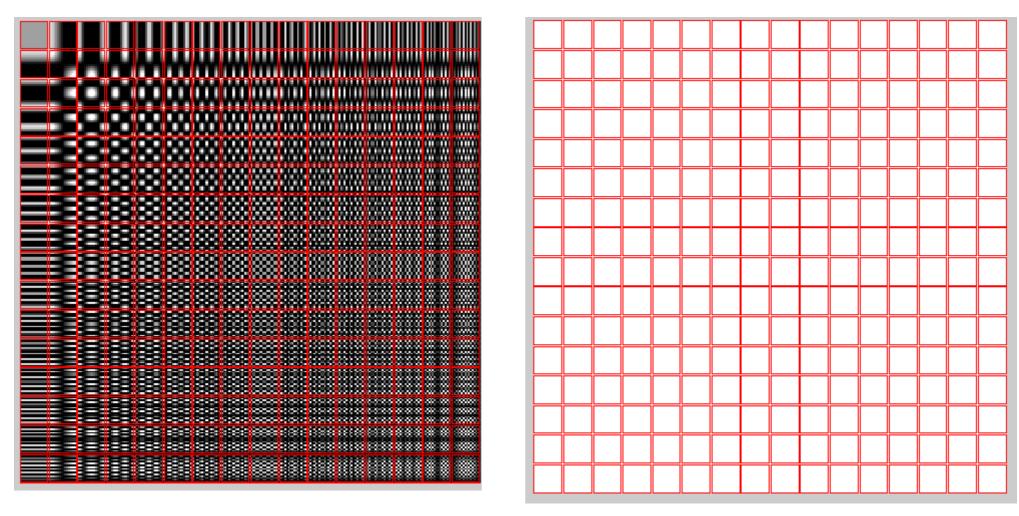
The **Fourier transform** decomposes a <u>function</u> of time (a *signal*) into the frequencies that make it up



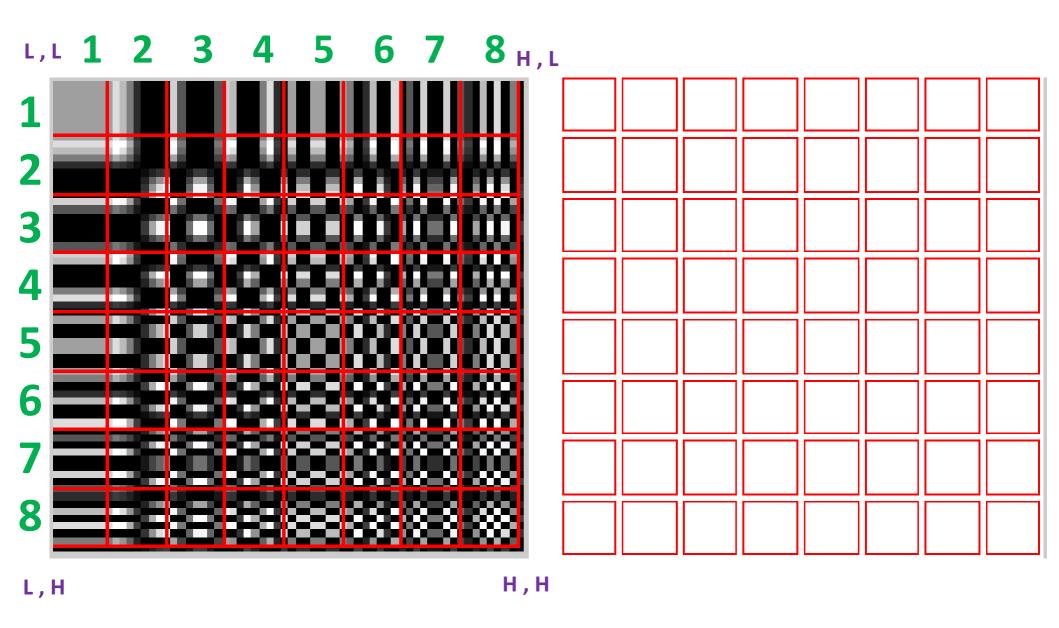
Frequency

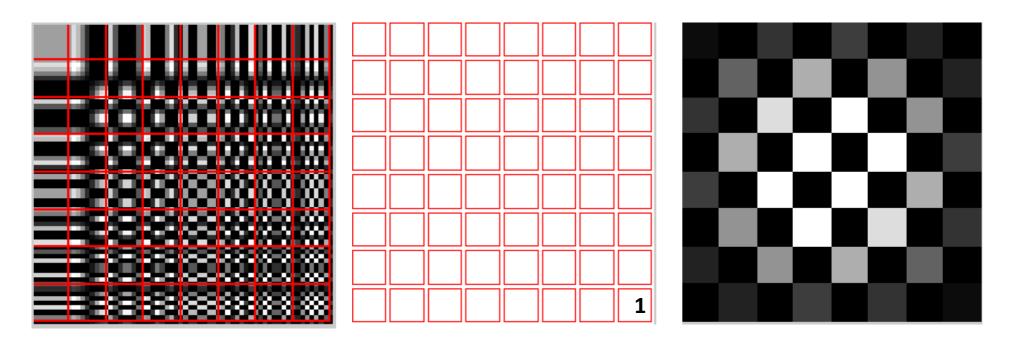




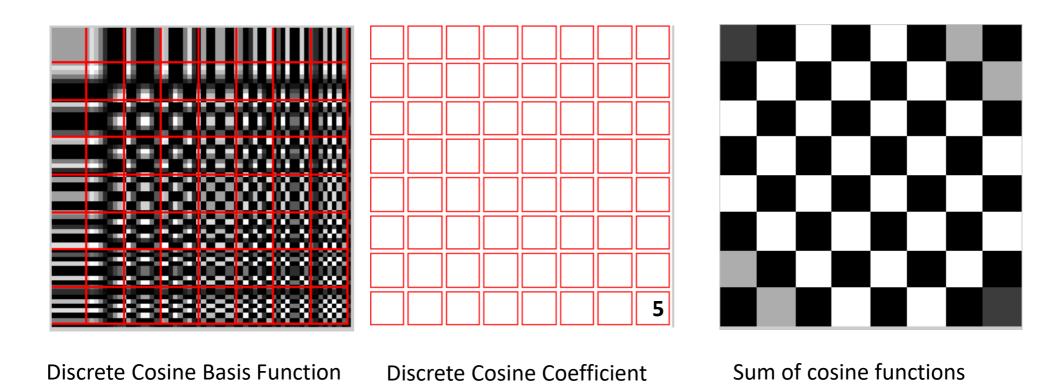


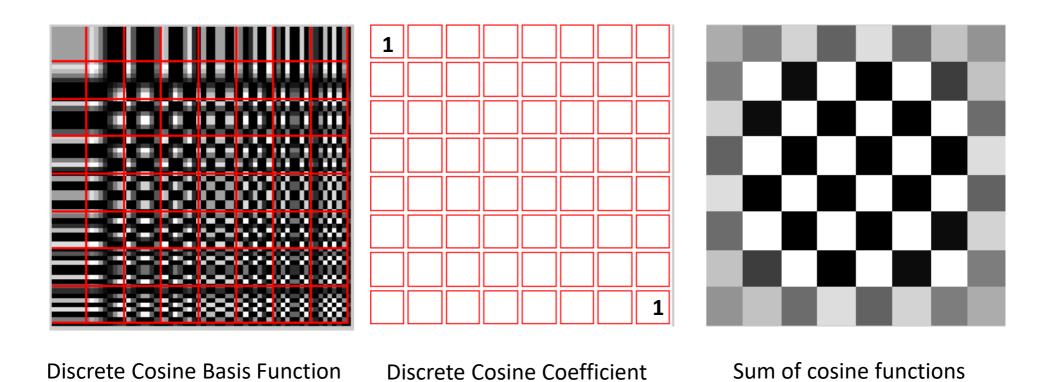
Frequency



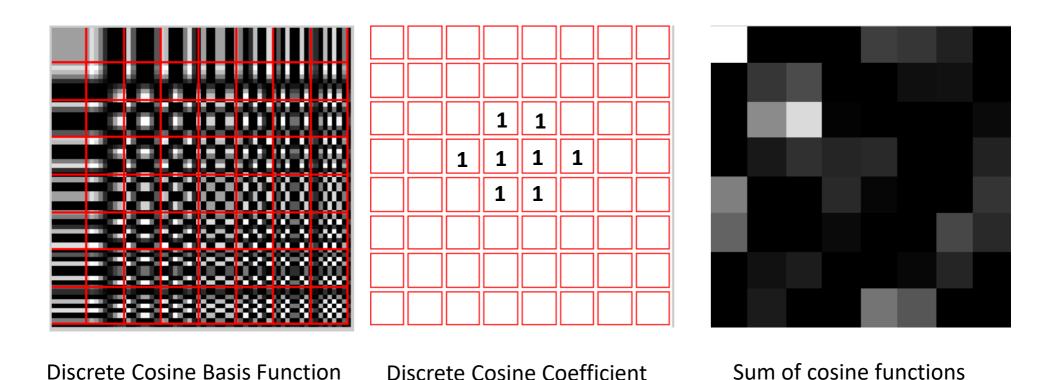

Frequency

Discrete Cosine Basis Function



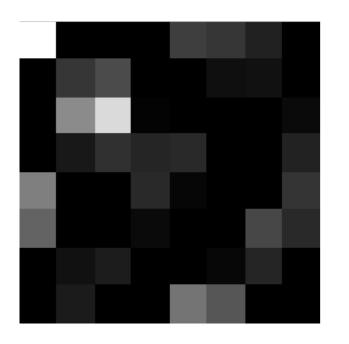


Discrete Cosine Basis Function

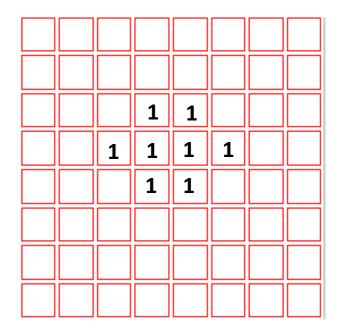

Discrete Cosine Coefficient

Sum of cosine functions

10


8 pixels

8 x 8 pixels


A discrete cosine transform (DCT) expresses a finite sequence of data points in terms of a sum of cosine functions oscillating at different frequencies

Nasir Ahmed

DCT

Sum of cosine functions

Discrete Cosine Coefficient

Forward DCT Formula

$$\mathrm{B}(\mathbf{r},\mathbf{c}) = \alpha_r \alpha_c \sum_{m=0}^{R-1} \sum_{n=0}^{C-1} I(m,n) \cos \frac{\pi(2m+1)r}{2R} \cos \frac{\pi(2n+1)c}{2N}$$

$$\alpha_r = \begin{cases} \frac{1}{\sqrt{R}} & ; r = 0 \\ \vdots & ; 1 \leq r \leq R-1 \end{cases}$$

$$\alpha_c = \begin{cases} \frac{1}{\sqrt{C}} & ; 1 \leq r \leq C-1 \end{cases}$$
 I is Image B is Transform image r is row R is image height c is column C is image width

$$B(r,c) = \alpha_r \alpha_c \sum_{m=0}^{R-1} \sum_{n=0}^{C-1} I(m,n) \cos \frac{\pi (2m+1)r}{2R} \cos \frac{\pi (2n+1)c}{2N}$$

$$\alpha_r = \begin{cases} \frac{1}{\sqrt{R}} & ; r = 0\\ \sqrt{\frac{2}{R}} & ; 1 \le r \le R - 1 \end{cases}$$

1	2	
3	4	
	Ī	

$$\alpha_c = \begin{cases} \frac{1}{\sqrt{C}} & ; c = 0\\ \sqrt{\frac{2}{C}} & ; 1 \le r \le C - 1 \end{cases}$$

I is Image

B is Transform image

r is row

R is image height

c is column

C is image width

$$B(r,c) = \alpha_r \alpha_c \sum_{m=0}^{R-1} \sum_{n=0}^{C-1} I(m,n) \cos \frac{\pi (2m+1)r}{2R} \cos \frac{\pi (2n+1)c}{2N}$$

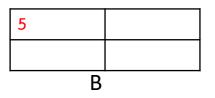
$$\alpha_r = \begin{cases} \frac{1}{\sqrt{R}} & ; r = 0\\ \sqrt{\frac{2}{R}} & ; 1 \le r \le R - 1 \end{cases}$$

$$\alpha_c = \begin{cases} \frac{1}{\sqrt{C}} & ; c = 0\\ \sqrt{\frac{2}{C}} & ; 1 \le r \le C - 1 \end{cases}$$

I is Image
B is Transform image
r is row
R is image height
c is column
C is image width

1	2
3	4

Forward DCT Formular


$$\alpha_r = \frac{1}{\sqrt{R}} = \frac{1}{\sqrt{2}} = 0.7071$$

$$\alpha_c = \frac{1}{\sqrt{C}} = \frac{1}{\sqrt{2}} = 0.7071$$

$$B(r,c) = \alpha_r \alpha_c \sum_{m=0}^{R-1} \sum_{n=0}^{C-1} I(m,n) \cos \frac{\pi (2m+1)r}{2R} + \cos \frac{\pi (2n+1)c}{2N}$$

1	2
3	4

$$B(0,0) = 0.7071 \times 0.7071 \times \left(\frac{\pi(2 \times 0 + 1)0}{2 \times 2}\right) cos\left(\frac{\pi(2 \times 0 + 1)0}{2 \times 2}\right) + 2cos\left(\frac{\pi(2 \times 0 + 1)0}{2 \times 2}\right) cos\left(\frac{\pi(2 \times 1 + 1)0}{2 \times 2}\right) + 3cos\left(\frac{\pi(2 \times 1 + 1)0}{2 \times 2}\right) cos\left(\frac{\pi(2 \times 0 + 1)0}{2 \times 2}\right)$$

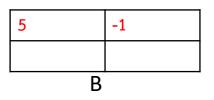
$$B(r,c) = \alpha_r \alpha_c \sum_{m=0}^{R-1} \sum_{n=0}^{C-1} I(m,n) \cos \frac{\pi (2m+1)r}{2R} \cos \frac{\pi (2n+1)c}{2N}$$

$$\alpha_r = \begin{cases} \frac{1}{\sqrt{R}} & ; r = 0\\ \sqrt{\frac{2}{R}} & ; 1 \le r \le R - 1 \end{cases}$$

$$\alpha_c = \begin{cases} \frac{1}{\sqrt{C}} & ; c = 0\\ \sqrt{\frac{2}{C}} & ; 1 \le r \le C - 1 \end{cases}$$

l is Image
B is Transform image
r is row
R is image height
c is column
C is image width

1	2	
3	4	
	ĺ	


$$\alpha_r = \frac{1}{\sqrt{R}} = \frac{1}{\sqrt{2}} = 0.7071$$

$$\alpha_c = \sqrt{\frac{2}{C}} = \sqrt{\frac{2}{2}} = 1$$

1	2
3	4

$$B(0,1)$$

= 0.7071 × 1

$$\times \left(1\cos\left(\frac{\pi(2\times0+1)0}{2\times2}\right)\cos\left(\frac{\pi(2\times0+1)1}{2\times2}\right) + 2\cos\left(\frac{\pi(2\times0+1)0}{2\times2}\right)\cos\left(\frac{\pi(2\times1+1)1}{2\times2}\right)$$

$$B(r,c) = \alpha_r \alpha_c \sum_{m=0}^{R-1} \sum_{n=0}^{C-1} I(m,n) \cos \frac{\pi (2m+1)r}{2R} \cos \frac{\pi (2n+1)c}{2N}$$

$$\alpha_r = \begin{cases} \frac{1}{\sqrt{R}} & ; r = 0 \\ \sqrt{\frac{2}{R}} & ; 1 \le r \le R - 1 \end{cases}$$

$$\alpha_c = \begin{cases} \frac{1}{\sqrt{C}} & ; c = 0\\ \sqrt{\frac{2}{C}} & ; 1 \le r \le C - 1 \end{cases}$$

I is Image
B is Transform image
r is row
R is image height
c is column
C is image width

1	2
3	4
I	

$$\alpha_r = \sqrt{\frac{2}{R}} = \sqrt{\frac{2}{2}} = 1$$
 $\alpha_c = \frac{1}{\sqrt{C}} = \frac{1}{\sqrt{2}} = 0.7071$

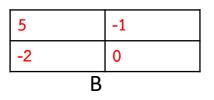
B(1,0)
= 1 × 0.707
×
$$\left(1\cos\left(\frac{\pi(2\times0+1)\mathbf{1}}{2\times2}\right)\cos\left(\frac{\pi(2\times0+1)\mathbf{0}}{2\times2}\right) + 2\cos\left(\frac{\pi(2\times0+1)\mathbf{1}}{2\times2}\right)\cos\left(\frac{\pi(2\times1+1)\mathbf{0}}{2\times2}\right)$$

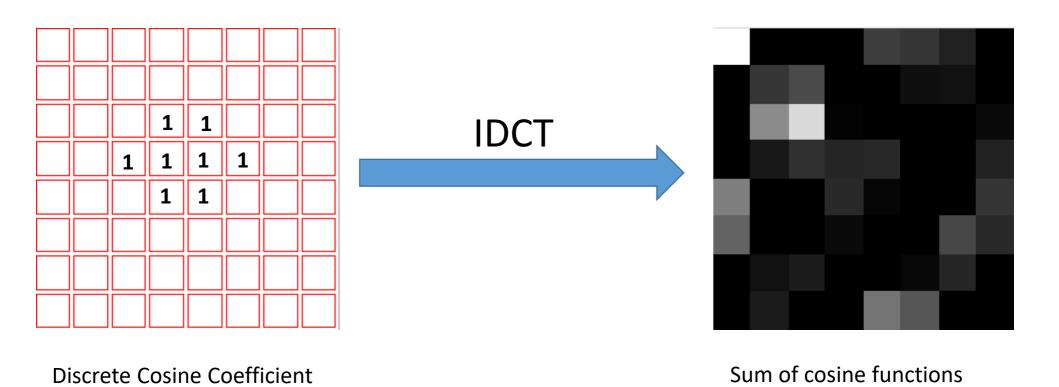
$$B(r,c) = \alpha_r \alpha_c \sum_{m=0}^{R-1} \sum_{n=0}^{C-1} I(m,n) \cos \frac{\pi (2m+1)r}{2R} \cos \frac{\pi (2n+1)c}{2N}$$

$$\alpha_r = \begin{cases} \frac{1}{\sqrt{R}} & ; r = 0 \\ \frac{2}{R} & ; 1 \le r \le R - 1 \end{cases}$$

$$\alpha_c = \begin{cases} \frac{1}{\sqrt{C}} & ; c = 0\\ \sqrt{\frac{2}{C}} & ; 1 \le r \le C - 1 \end{cases}$$

I is Image B is Transform image r is row R is image height c is column C is image width


1	2	
3	4	


$$\alpha_r = \sqrt{\frac{2}{R}} = \sqrt{\frac{2}{2}} = 1$$

$$\alpha_c = \sqrt{\frac{2}{C}} = \sqrt{\frac{2}{2}} = 1$$

$$B(1,1) = 1 \times 1$$

$$\times \left(1\cos\left(\frac{\pi(2\times0+1)1}{2\times2}\right)\cos\left(\frac{\pi(2\times0+1)1}{2\times2}\right) + 2\cos\left(\frac{\pi(2\times0+1)1}{2\times2}\right)\cos\left(\frac{\pi(2\times1+1)1}{2\times2}\right)$$

Inverse Discrete Cosine Transform Formula

$$I(m,n) = \sum_{r=0}^{M-1} \sum_{c=0}^{N-1} \alpha_r \alpha_c B(r,c) cos\left(\frac{\pi(2m+1)r}{2M}\right) cos\left(\frac{\pi(2n+1)c}{2N}\right)$$

$$\alpha_r = \begin{cases} \frac{1}{\sqrt{M}} & ; r = 0\\ \sqrt{\frac{2}{M}} & ; 1 \le r \le M - 1 \end{cases}$$

$$\alpha_c = \begin{cases} \frac{1}{\sqrt{N}} & ; c = 0\\ \sqrt{\frac{2}{N}} & ; 1 \le c \le N - 1 \end{cases}$$

I is Image
B is Transform image
r is row
R is image height
c is column
C is image width

Inverse Discrete Cosine Transform Formula

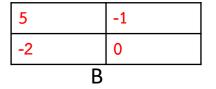
$$I(m,n) = \sum_{r=0}^{M-1} \sum_{c=0}^{N-1} \alpha_r \alpha_c B(r,c) cos\left(\frac{\pi(2m+1)r}{2M}\right) cos\left(\frac{\pi(2n+1)c}{2N}\right)$$

$$\alpha_r = \begin{cases} \frac{1}{\sqrt{M}} & ; r = 0\\ \sqrt{\frac{2}{M}} & ; 1 \le r \le M - 1 \end{cases}$$

$$\alpha_c = \begin{cases} \frac{1}{\sqrt{N}} & ; c = 0\\ \sqrt{\frac{2}{N}} & ; 1 \le c \le N - 1 \end{cases}$$

I is Image

B is Transform image


r is row

R is image height

c is column

C is image width

Precompute

$$\alpha_r = \begin{cases} \frac{1}{\sqrt{M}} = \frac{1}{\sqrt{2}} = 0.7071 & ; r = 0\\ \sqrt{\frac{2}{M}} = \sqrt{\frac{2}{2}} = 1 ; 1 \le r \le M - 1 \end{cases}$$

$$\alpha_c = \begin{cases} \frac{1}{\sqrt{N}} &= \frac{1}{\sqrt{2}} = 0.7071 & ; c = 0\\ \sqrt{\frac{2}{N}} &= \sqrt{\frac{2}{2}} = 1 ; 1 \le c \le N - 1 \end{cases}$$

$$I(m,n) = \sum_{r=0}^{M-1} \sum_{c=0}^{N-1} \alpha_r \alpha_c B(r,c) cos \left(\frac{\pi(2m+1)}{2M}\right) r cos \left(\frac{\pi(2n+1)}{2N}\right) c$$

$$I(0,0)$$

$$= \left(0.7071 \times 0.7071 \times 5 \times cos \left(\frac{\pi(2 \times 0 + 1)0}{2 \times 2}\right) \times cos \left(\frac{\pi(2 \times 0 + 1)0}{2 \times 2}\right)\right)$$

$$+ \left(0.7071 \times 1 \times -1 \times cos \left(\frac{\pi(2 \times 0 + 1)0}{2 \times 2}\right) \times cos \left(\frac{\pi(2 \times 0 + 1)1}{2 \times 2}\right)\right)$$

$$+ \left(1 \times 0.707 \times -2 \times cos \left(\frac{\pi(2 \times 0 + 1)1}{2 \times 2}\right) \times cos \left(\frac{\pi(2 \times 0 + 1)0}{2 \times 2}\right)\right)$$

$$+ \left(1 \times 1 \times 0 \times cos \left(\frac{\pi(2 \times 0 + 1)1}{2 \times 2}\right) \times cos \left(\frac{\pi(2 \times 0 + 1)1}{2 \times 2}\right)\right)$$

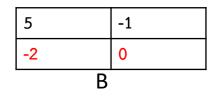
$$I(0,0)$$

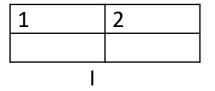
= $(0.7071 \times 0.7071 \times 5 \times 1 \times 1) + (0.7071 \times 1 \times -1 \times 1 \times 0.7071) + (1 \times 0.707 \times -2 \times 0.7071 \times 1) + (1 \times 1 \times 0 \times 0.7071 \times 0.7071)$

$$I(0,0) = (2.5) + (-0.5) + (-1) + (0) = 1$$

$$I(0,1) = \left(0.7071 \times 0.7071 \times 5 \times \cos\left(\frac{\pi(2 \times 0 + 1)0}{2 \times 2}\right) \times \cos\left(\frac{\pi(2 \times 1 + 1)0}{2 \times 2}\right)\right)$$

$$+ \left(0.7071 \times 1 \times -1 \times \cos\left(\frac{\pi(2 \times 0 + 1)0}{2 \times 2}\right) \times \cos\left(\frac{\pi(2 \times 1 + 1)1}{2 \times 2}\right)\right)$$


$$+ \left(1 \times 0.707 \times -2 \times \cos\left(\frac{\pi(2 \times 0 + 1)1}{2 \times 2}\right) \times \cos\left(\frac{\pi(2 \times 1 + 1)0}{2 \times 2}\right)\right)$$


$$+ \left(1 \times 1 \times 0 \times \cos\left(\frac{\pi(2 \times 0 + 1)1}{2 \times 2}\right) \times \cos\left(\frac{\pi(2 \times 1 + 1)1}{2 \times 2}\right)\right)$$

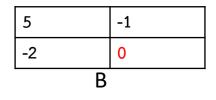
$$I(0,1) = (0.7071 \times 0.7071 \times 5 \times 1 \times 1) + (0.7071 \times 1 \times -1 \times 1 \times -0.7071)$$

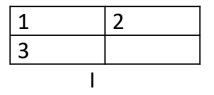
$$+ (1 \times 0.707 \times -2 \times 0.7071 \times 1) + (1 \times 1 \times 0 \times 0.7071 \times -0.7071)$$

$$I(0,1) = (2.5) + (0.5) + (-1) + (0) = 2$$

$$I(1,0) = \left(0.7071 \times 0.7071 \times 5 \times \cos\left(\frac{\pi(2 \times 1 + 1)0}{2 \times 2}\right) \times \cos\left(\frac{\pi(2 \times 0 + 1)0}{2 \times 2}\right)\right)$$

$$+ \left(0.7071 \times 1 \times -1 \times \cos\left(\frac{\pi(2 \times 1 + 1)0}{2 \times 2}\right) \times \cos\left(\frac{\pi(2 \times 0 + 1)1}{2 \times 2}\right)\right)$$


$$+ \left(1 \times 0.707 \times -2 \times \cos\left(\frac{\pi(2 \times 1 + 1)1}{2 \times 2}\right) \times \cos\left(\frac{\pi(2 \times 0 + 1)0}{2 \times 2}\right)\right)$$


$$+ \left(1 \times 1 \times 0 \times \cos\left(\frac{\pi(2 \times 1 + 1)1}{2 \times 2}\right) \times \cos\left(\frac{\pi(2 \times 0 + 1)1}{2 \times 2}\right)\right)$$

$$I(1,0) = (0.7071 \times 0.7071 \times 5 \times 1 \times 1) + (0.7071 \times 1 \times -1 \times 1 \times 0.707)$$

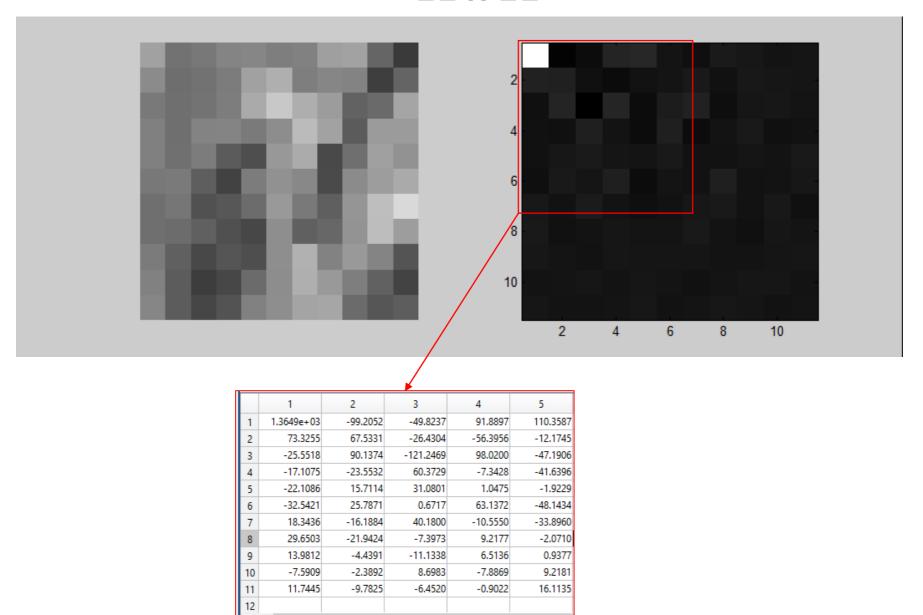
$$+ (1 \times 0.707 \times -2 \times -0.7071 \times 1) + (1 \times 1 \times 0 \times -0.7071 \times 0.7071)$$

$$I(1,0) = (2.5) + (-0.5) + (1) + (0) = 3$$

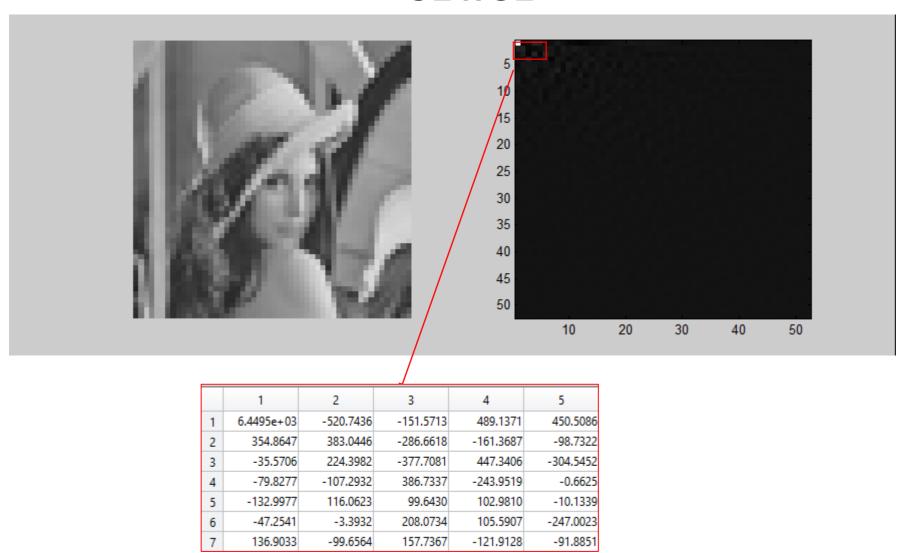


$$I(1,1) = \left(0.7071 \times 0.7071 \times 5 \times \cos\left(\frac{\pi(2 \times 1 + 1)0}{2 \times 2}\right) \times \cos\left(\frac{\pi(2 \times 1 + 1)0}{2 \times 2}\right)\right) + \left(0.7071 \times 1 \times -1 \times \cos\left(\frac{\pi(2 \times 1 + 1)0}{2 \times 2}\right) \times \cos\left(\frac{\pi(2 \times 1 + 1)1}{2 \times 2}\right)\right) + \left(1 \times 0.707 \times -2 \times \cos\left(\frac{\pi(2 \times 1 + 1)1}{2 \times 2}\right) \times \cos\left(\frac{\pi(2 \times 1 + 1)0}{2 \times 2}\right)\right) + \left(1 \times 1 \times 0 \times \cos\left(\frac{\pi(2 \times 1 + 1)1}{2 \times 2}\right) \times \cos\left(\frac{\pi(2 \times 1 + 1)0}{2 \times 2}\right)\right)$$

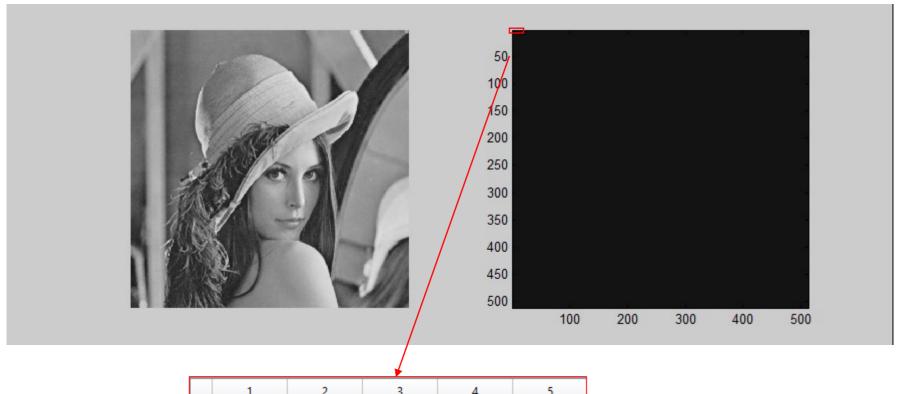
$$I(1,1) = (0.7071 \times 0.7071 \times 5 \times 1 \times 1) + (0.7071 \times 1 \times -1 \times 1 \times -0.707) + (1 \times 0.707 \times -2 \times -0.7071 \times 1) + (1 \times 1 \times 0 \times -0.7071 \times -0.7071)$$


$$I(1,1) = (2.5) + (0.5) + (1) + (0) = 4$$

5	-1			
-2	0			
В				


Relationship between image size and DCT coefficients

11 x 11


Relationship between image size and DCT coefficients

52 x 52

Relationship between image size and DCT coefficients

512 x 512

	1	2	3	4	5
1	6.3510e+04	-5.2186e+03	-1.2174e+03	4.9412e+03	4.2037e+03
2	3.5498e+03	3.8991e+03	-3.2492e+03	-1.2073e+03	-1.1665e+03
3	-104.5352	1.5585e+03	-2.9924e+03	4.0129e+03	-2.8571e+03
4	-852.1659	-873.8822	3.8690e+03	-2.8289e+03	618.8543
5	-1.2477e+03	1.0509e+03	1.0615e+03	1.1741e+03	-131.7160
6	-165.8589	-326.9890	2.5260e+03	253.7506	-2.2538e+03
7	1.4370e+03	-1.0205e+03	1.2802e+03	-1.0940e+03	-724.0527
8	1.7526e+03	-1.3310e+03	-833.1556	1.1272e+03	-232.8831
9	-222.0533	168.5836	39.9274	-332.9693	644.6928
10	243.1871	-729.5183	118.0543	-295.0197	978.3837

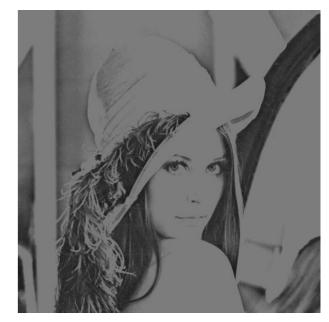
Relationship between image frequency and DCT coefficients

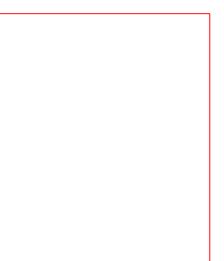
Original Image

Recovered Image

Difference

Mask Pattern


Relationship between image frequency and DCT coefficients


Original Image

Recovered Image

Difference

Mask Pattern

1x1

Relationship between image frequency and DCT coefficients

Original Image

Recovered Image

Difference

Mask Pattern

10x10

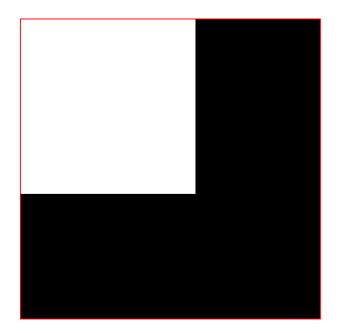

Original Image

Recovered Image

Difference

Mask Pattern

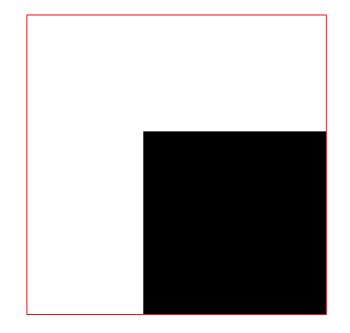
200x200


Original Image

Recovered Image

Difference

Mask Pattern


Original Image

Recovered Image

Difference

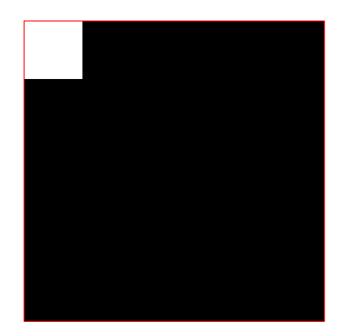
Mask Pattern

Original Image

Recovered Image

Difference

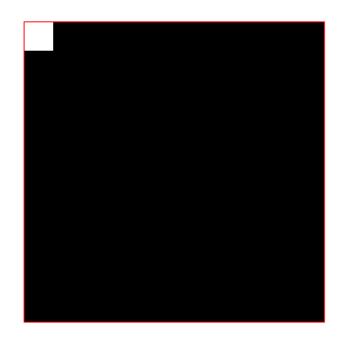
Mask Pattern


Original Image

Recovered Image

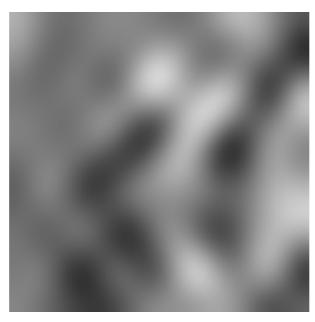
Difference

Mask Pattern

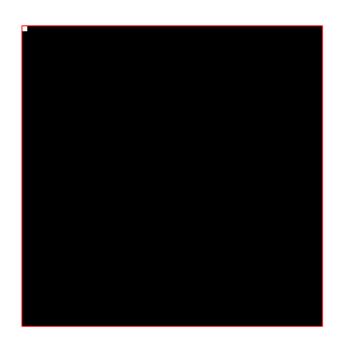

Original Image

Recovered Image

Difference



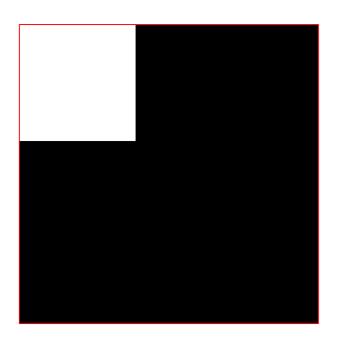
Mask Pattern


Original Image

Recovered Image

Difference

Mask Pattern


Original Image

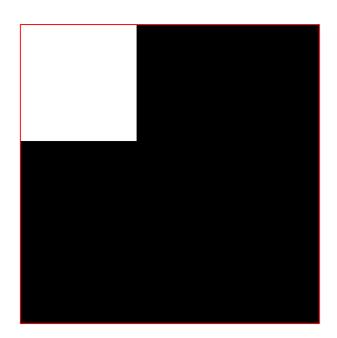
Recovered Image

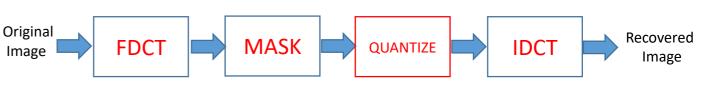


Difference

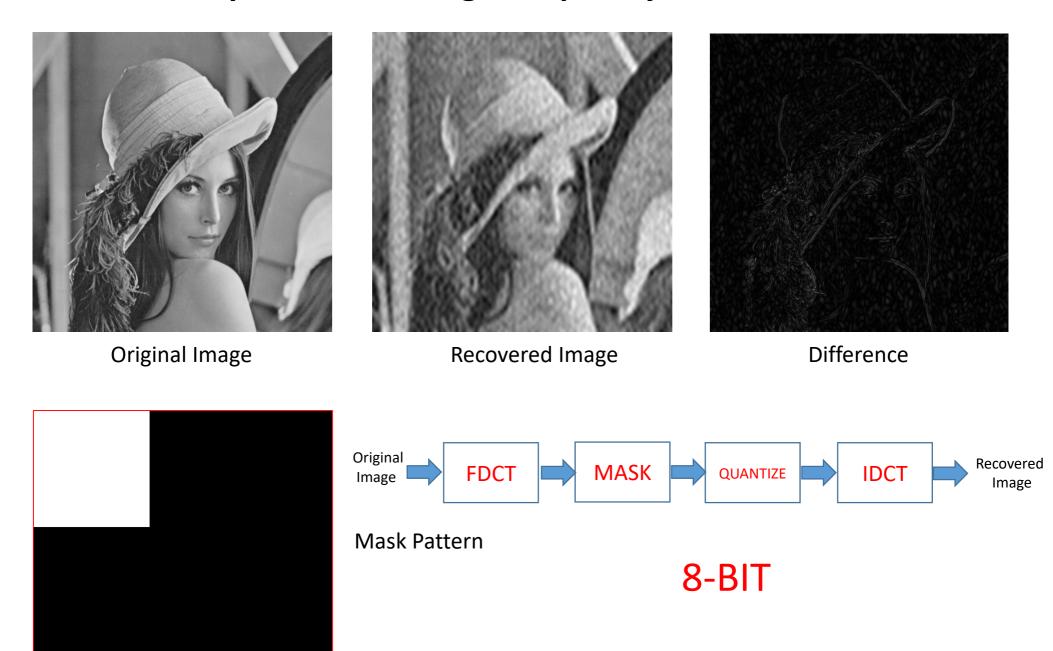
Mask Pattern

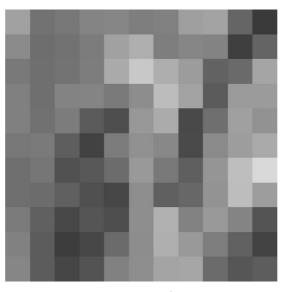
	1	2	3	4
1	6.3510e+04	-5.2185e+03	-1.2172e+03	4.9413e+03
2	3.5497e+03	3.8986e+03	-3.2493e+03	-1.2075e+03
3	-104.6609	1.5583e+03	-2.9925e+03	4.0130e+03
4	-851.8232	-874.1121	3.8686e+03	-2.8288e+03
5	-1.2482e+03	1.0505e+03	1.0611e+03	1.1745e+03
6	-165.7130	-326.5807	2.5264e+03	253.8995
7	1.4371e+03	-1.0204e+03	1.2802e+03	-1.0941e+03
8	1.7531e+03	-1.3305e+03	-833.4106	1.1270e+03
9	-221.9198	168.6203	39.7324	-333.3642
10	243.2396	-729.7188	118.2280	-294.6010
11	-569.8203	529.1188	-532.0261	-46.5159


Original Image



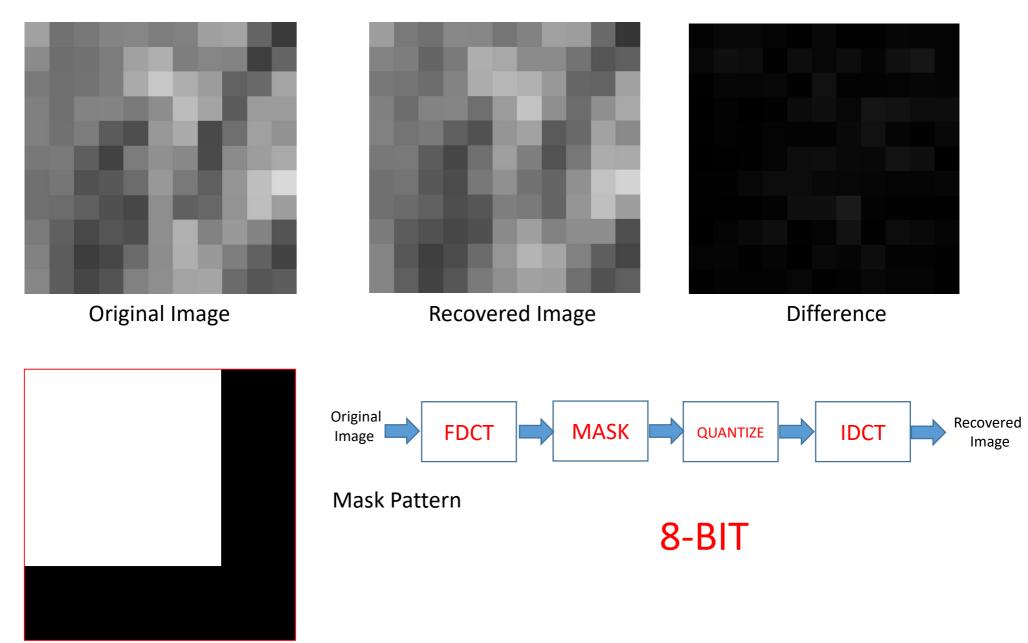
Recovered Image

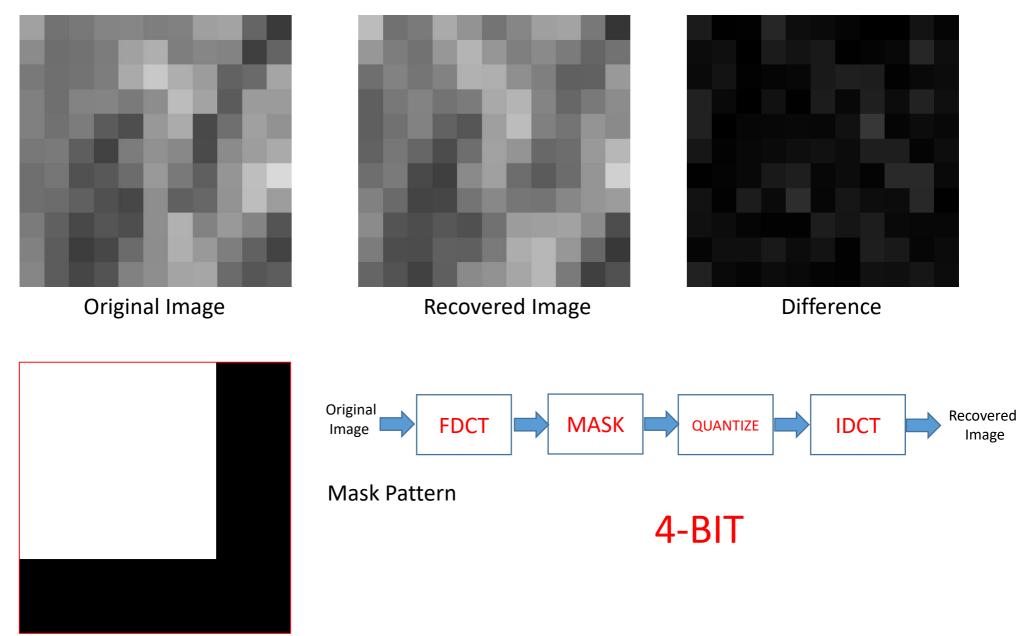

Difference

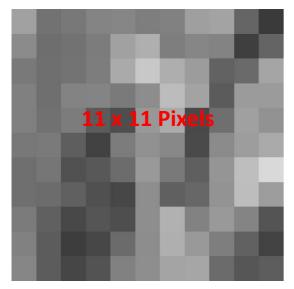

Mask Pattern

24-BIT

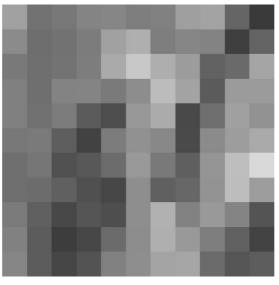
Original Image


Recovered Image

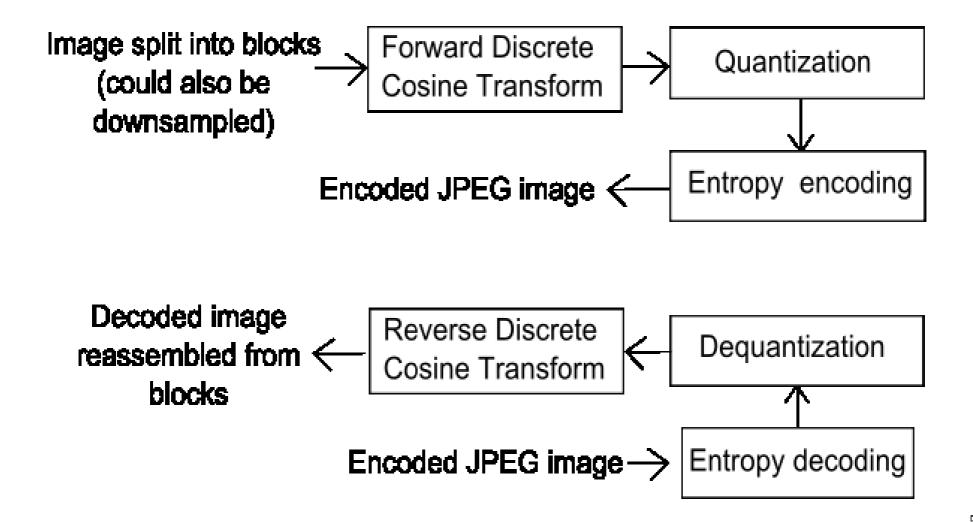


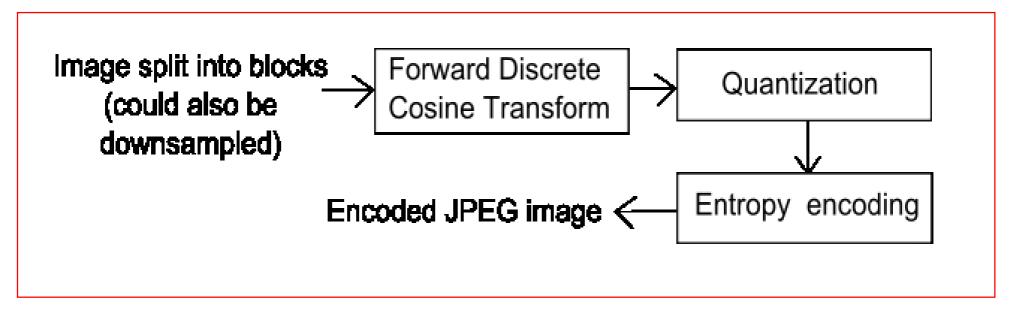

Difference

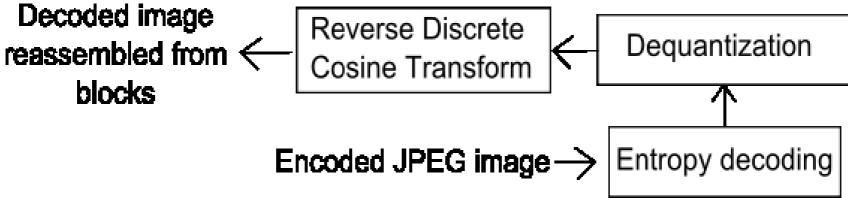
	1	2	3	4	5	6	7	8	9	10	11
1	1.3649e+03	-99,2052	-49.8237	91.8897	110.3587	-3.5995	-32.8883	30.8823	16.9340	-6.5352	2.0509
2	73.3255	67.5331	-26,4304	-56,3956	-12.1745	-3.9397	25.1227	-17.6125	20.8615	11.8741	3.7422
3	-25.5518	90.1374	-121.2469	98.0200	-47.1906	43.4739	75.3813	-38.7571	9.6894	13.6114	-3.3104
4	-17.1075	-23.5532	60.3729	-7.3428	-41.6396	62.7329	-40.2204	-10.7158	27.2102	-24.4389	-12.0919
5	-22.1086	15.7114	31.0801	1.0475	-1.9229	29.4013	-11.0035	-13.8581	1.8397	-8.1757	25.4932
6	-32.5421	25.7871	0.6717	63.1372	-48.1434	0.1742	-14.5857	61.4364	-11.9249	-9.5090	15.3389
7	18.3436	-16.1884	40.1800	-10.5550	-33.8960	-11.5371	13.7111	26.9295	-13.2509	23.5859	-25.6042
8	29.6503	-21.9424	-7.3973	9.2177	-2.0710	-2.3186	26.0117	-6.1949	-26.8234	7.2502	-0.7330
9	13.9812	-4.4391	-11.1338	6.5136	0.9377	1.4823	3.8832	-5.6331	-8.9524	1.9252	8.2897
10	-7.5909	-2.3892	8.6983	-7.8869	9.2181	-0.3284	-19.5435	-1.7107	7.5322	7.8304	-5.3475
11	11.7445	-9.7825	-6.4520	-0.9022	16.1135	-11.5351	-4.2073	14.3701	4.8269	-16.6809	-0.4980

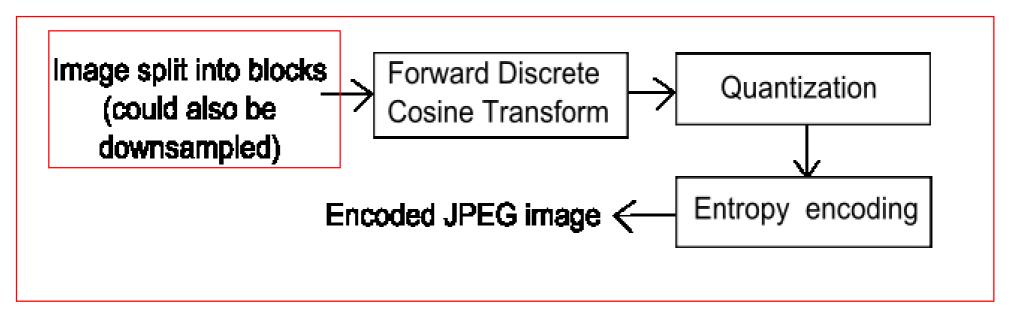

Discrete Cosine Coefficient

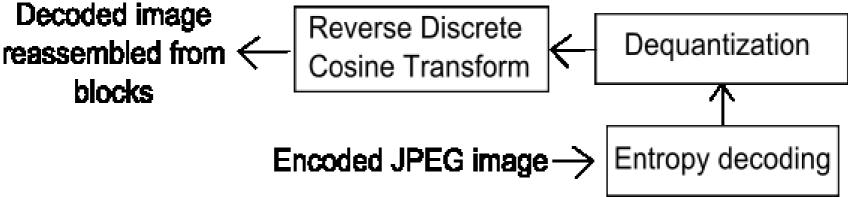
Original Image

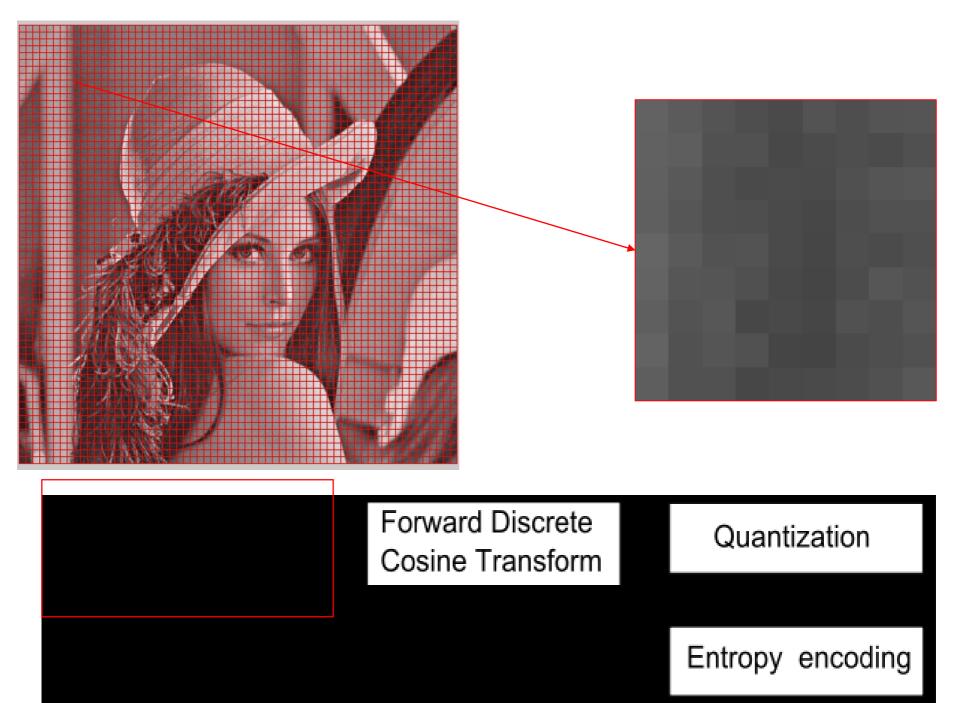

Recovered Image

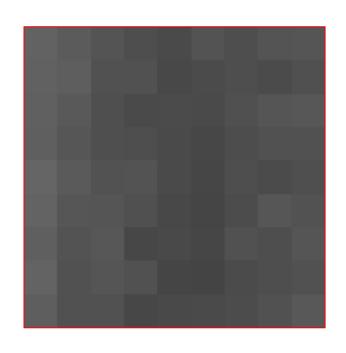


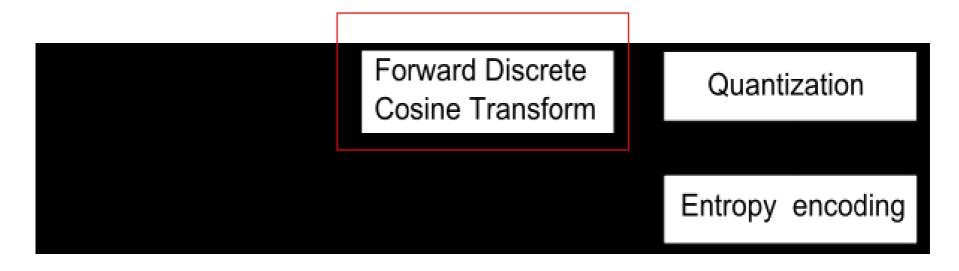

Difference


	1	2	3	4	5	6	7	8	9	10	11
ſ	1.3649e+03	-99,2052	-49.8237	91.8897	110.3587	-3.5995	-32.8883	30.8823	16.9340	-6.5352	2.0509
2	Hig	07.339	1 pag	-56,3956	-12.1745	-3.9397	25.1227	-17.6125	20.8615	11.8741	3.7422
3	-25.5518	90.1374	-121.2469	98.0200	-47.1906	43.4739	75.3813	-38.7571	9.6894	13.6114	-3.3104
4	-17.1075	-23.5532	60.3729	-7.3428	-41.6396	62.7329	-40.2204	-10.7158	27.2102	-24.4389	-12.0919
5	-22.1086	15.7114	31.0801	1.0475	-1.9229	29.4013	-11.0035	-13.8581	1.8397	-8.1757	25.4932
6	-32.5421	25.7871	0.6717	63.1372	-48.1434	0.1742	-14.5857	61.4364	-11.9249	-9.5090	15.3389
7	18.3436	-16.1884	40.1800	-10.5550	-33.8960	-11.5371	13.7111	26.9295	-13.2509	23.5859	-25.6042
8	29.6503	-21.9424	-7.3973	9.2177	-2.0710	-2.3186	26.0117	-6.1949	-26.8234	7.2502	-0.7330
9	13.9812	-4,4391	-11.1338	6.5136	0.9377	1.4823	3.8832	-5.6331	-8.9524	1.9252	8.2897
10	-7.5909	-2.3892	8.6983	-7.8869	9.2181	-0.3284	-19.5435	1.7107	O VA	im ^{7,8304}	-52 ⁴⁷⁵
11	11.7445	-9.7825	-6.4520	-0.9022	16.1135	-11.5351	-4.2073	14.3701	4.8269		


Discrete Cosine Coefficient







98 91 84 78 74 83 78 84 97 94 81 81 72 75 78 75 96 89 79 74 75 74 80 85 95 86 79 78 74 71 77 81 101 90 82 83 74 70 78 75 99 86 85 80 72 69 76 86 95 83 87 71 73 70 81 78 99 81 85 81 69 68 75 78

649.5000	44.7806	40.2668	-0.8119	8.2500	9.3513	1.1804	1.7943
7.5876	-2.5360	-0.1526	6.3021	-4.5284	-7.6330	-2.8671	-8.1616
1.0128	-0.2040	-0.6731	0.2222	-4.3952	1.2259	5.8247	-0.5401
5.8321	2.0361	-0.2271	-0.7432	-0.9167	-0.4781	2.2782	-1.0104
0.5000	2.4496	-3.0026	1.2275	2.7500	2.6562	1.2437	-3.3634
-1.0598	-8.8306	2.5785	0.4413	-2.2920	-4.1585	3.8596	5.2484
3.0983	-4.1411	4.0747	-2.8049	5.0677	-2.1182	3.9231	-1.6159
1.6330	-0.2422	0.5145	3.4207	-3.0455	-0.3569	-0.9772	2.9376

649.5000	44.7806	40.2668	-0.8119	8.2500	9.3513	1.1804	1.7943
7.5876	-2.5360	-0.1526	6.3021	-4.5284	-7.6330	-2.8671	-8.1616
1.0128	-0.2040	-0.6731	0.2222	-4.3952	1.2259	5.8247	-0.5401
5.8321	2.0361	-0.2271	-0.7432	-0.9167	-0.4781	2.2782	-1.0104
0.5000	2.4496	-3.0026	1.2275	2.7500	2.6562	1.2437	-3.3634
-1.0598	-8.8306	2.5785	0.4413	-2,2920	-4.1585	3.8596	5.2484
3.0983	-4.1411	4.0747	-2.8049	5.0677	-2.1182	3.9231	-1.6159
1.6330	-0.2422	0.5145	3.4207	-3.0455	-0.3569	-0.9772	2.9376

 16 11 10 16 24
 40
 51
 61

 12 12 14 19 26
 58
 60
 55

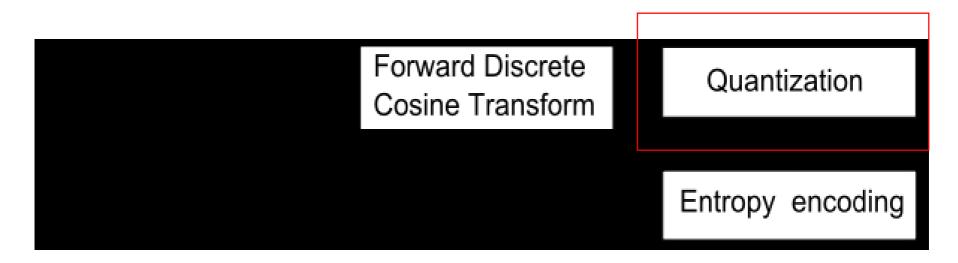
 14 13 16 24 40
 57
 69
 56

 14 17 22 29 51
 87
 80
 62

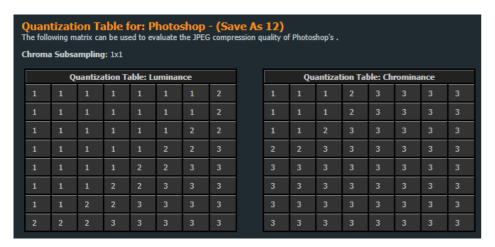
 18 22 37 56 68
 109 103
 77

 24 36 55 64 81
 104 113
 92

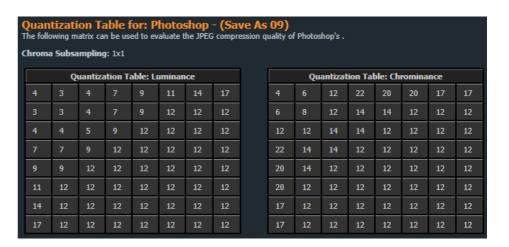
 49 64 78 87 103 121
 120
 101

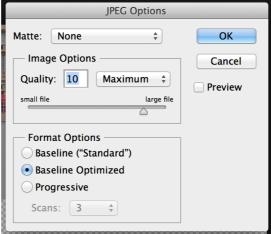

 72 92 95 98 112 100
 103
 99

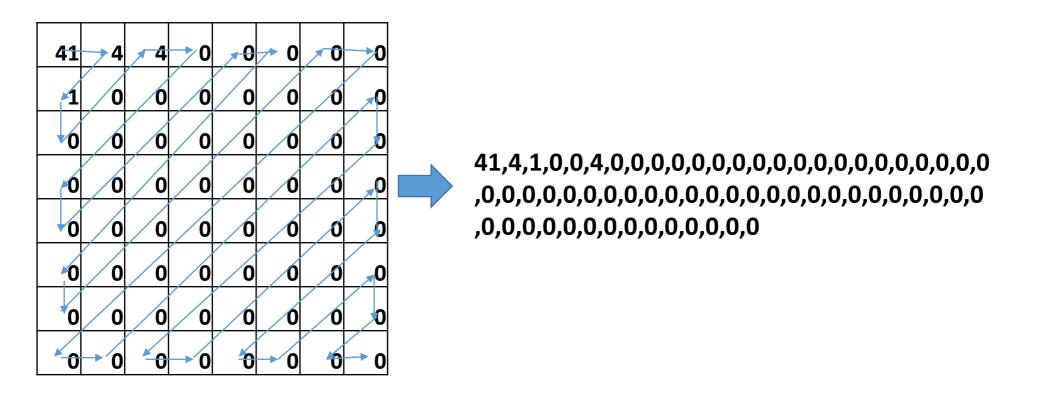
 \odot

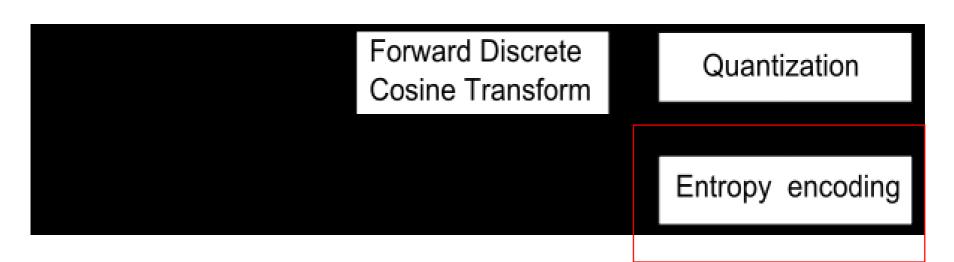

DCT

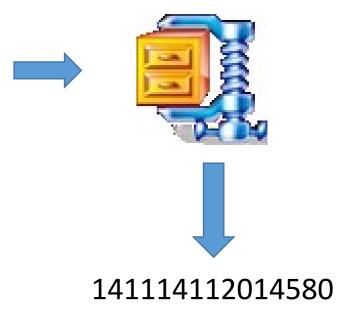
Quantization matrix

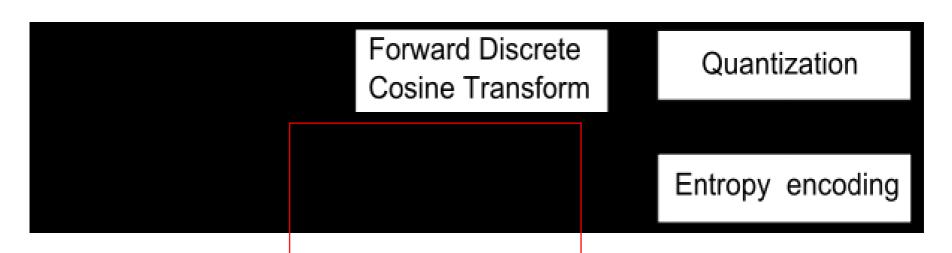

Quantized DCT

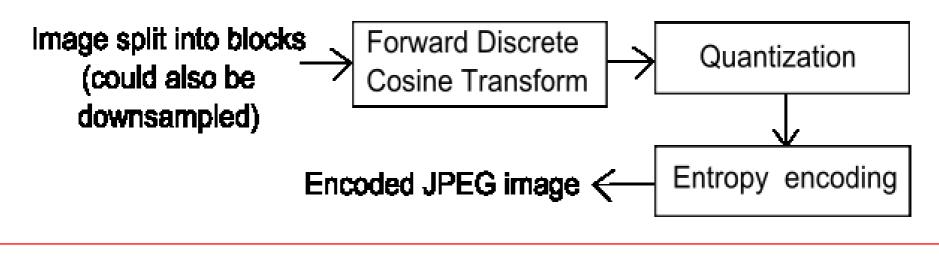

JPEG Image Compression Algorithm: Quantization Matrix

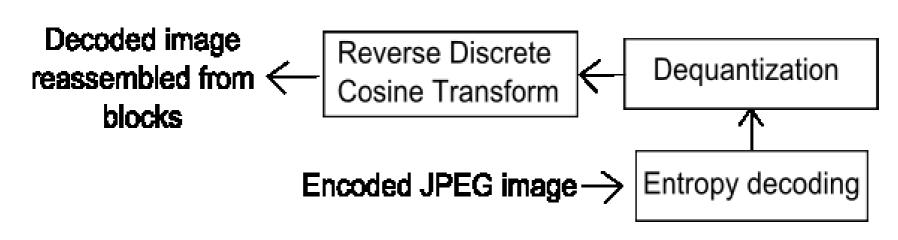


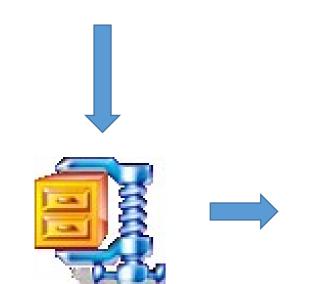


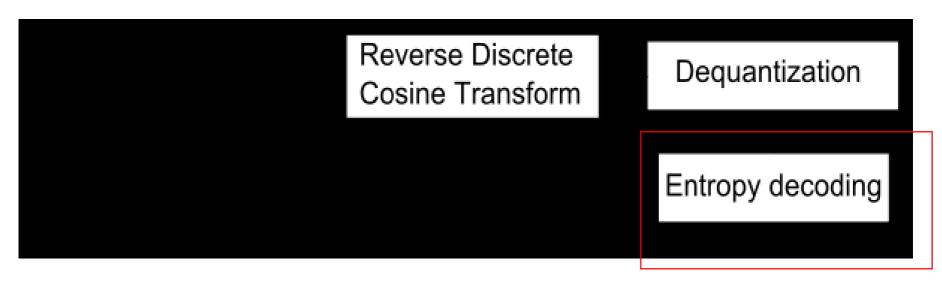


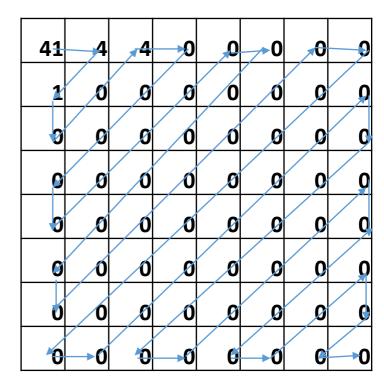


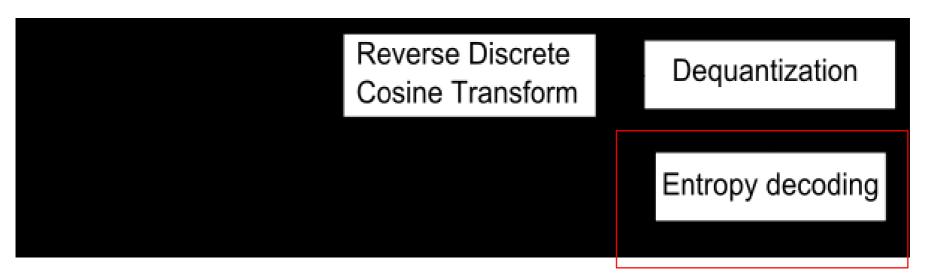


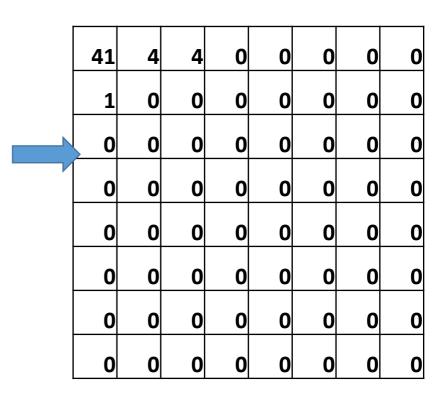


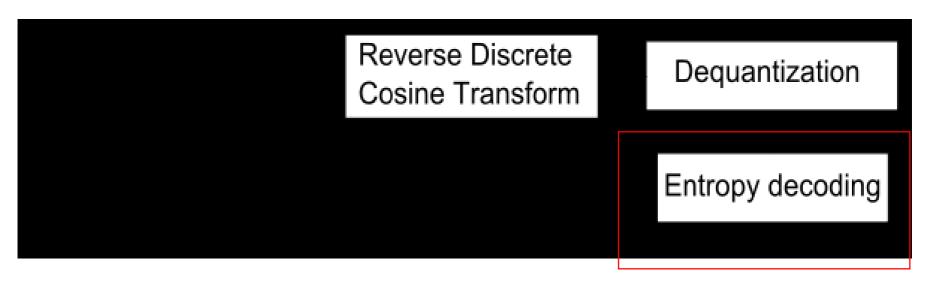












41	4	4	0	0	0	0	0
1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

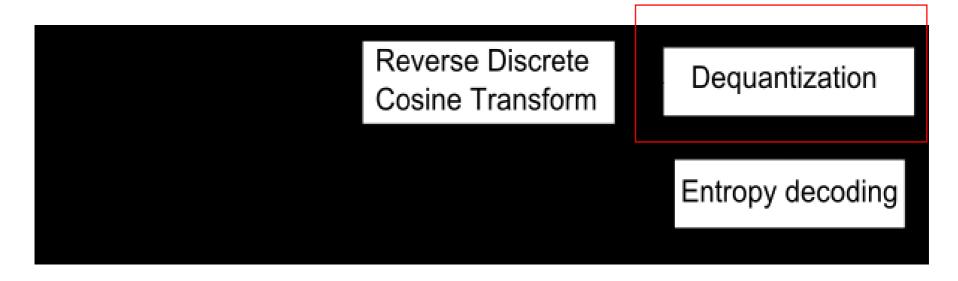
 \odot

 16 11 10 16 24
 40
 51
 61

 12 12 14 19 26
 58
 60
 55

 14 13 16 24 40
 57
 69
 56

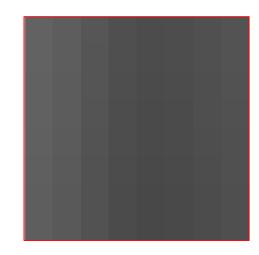
 14 17 22 29 51
 87
 80
 62


 18 22 37 56 68
 109 103
 77

 24 36 55 64 81
 104 113
 92

 49 64 78 87 103 121
 120
 101

 72 92 95 98 112 100
 103
 99

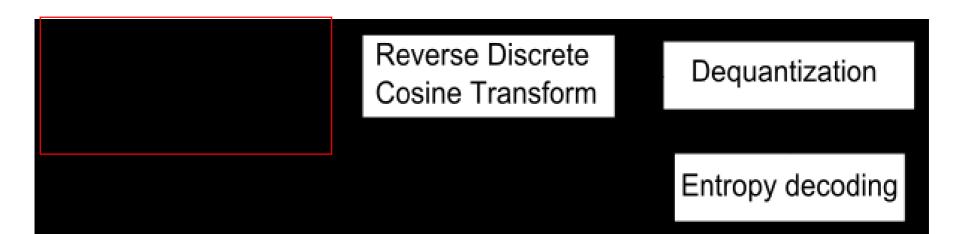

656	44	40	0	0	0	0	0
12	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

656	44	40	0	0	0	0	0
-				_			_
12	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

98	93	86	79	76	77	80	83
98	93	85	79	76	77	80	83
97	92	85	78	75	76	79	82
97	92	84	77	74	75	79	81
96	91	83	77	74	75	78	80
95	90	82	76	73	74	77	80
94	89	82	75	72	73	76	79
94	89	82	75	72	73	76	79

Original Image

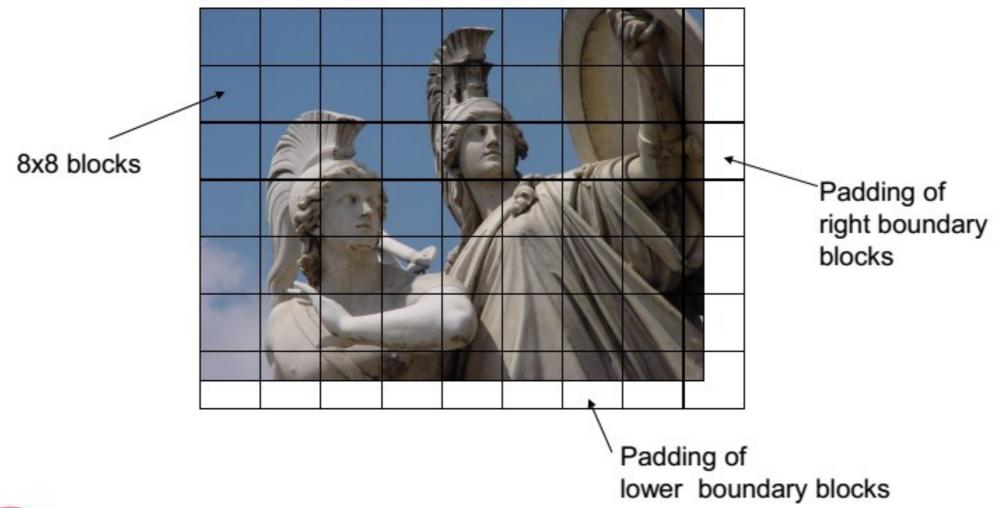
98 91 84 78 74 83 78 84 97 94 81 81 72 75 78 75 96 89 79 74 75 74 80 85 95 86 79 78 74 71 77 81 101 90 82 83 74 70 78 75 99 86 85 80 72 69 76 86 95 83 87 71 73 70 81 78 99 81 85 81 69 68 75 78



Reverse Discrete
Cosine Transform

Dequantization

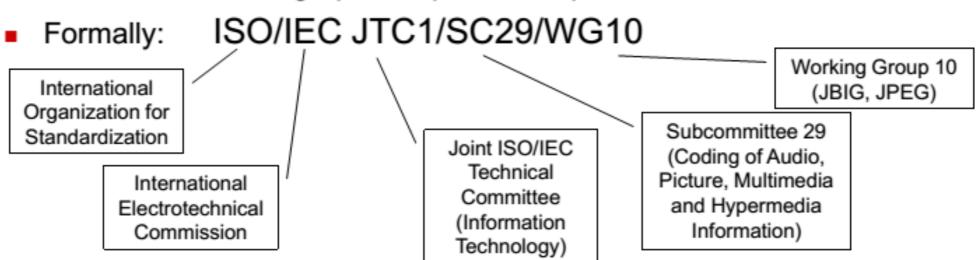
Entropy decoding

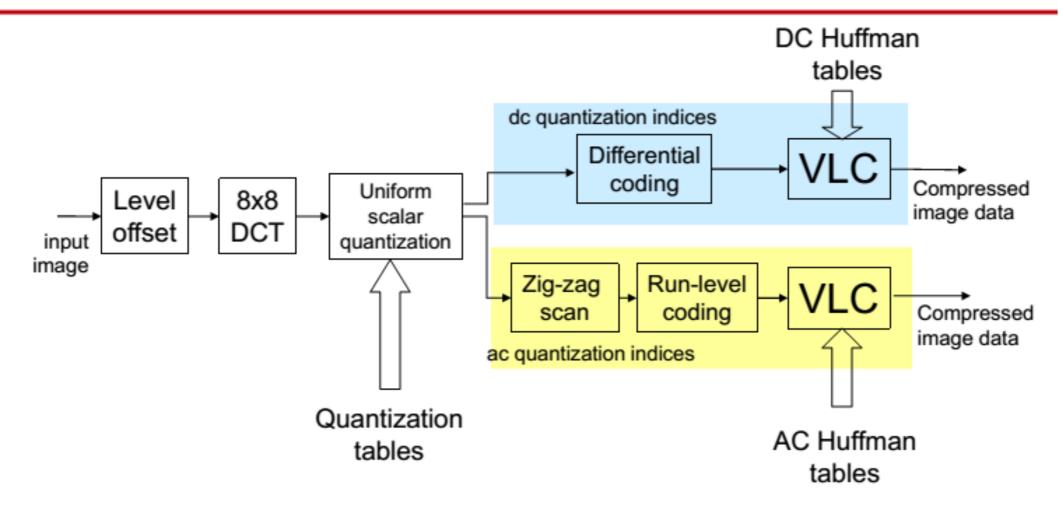


Reverse Discrete Cosine Transform

Dequantization

Entropy decoding


JPEG: image partition into 8x8 block


JPEG standard

JPEG: "Joint Photographic Experts Group"

- Joint effort with CCITT (International Telephone and Telegraph Consultative Committee, now ITU-T) Study Group VIII
- Work commenced in 1986
- International standard ISO/IEC 10918-1 and CCITT Rec. T.81 in 1992
- Widely used for image exchange, WWW, and digital photography
- Motion-JPEG is de facto standard for digital video editing

Baseline JPEG coder

Common JPEG markers

Short name	Bytes	Payload	Name	Comments
SOI	0xFF, 0xD8	none	Start Of Image	
SOF0	0xFF, 0xC0	variable size	Start Of Frame (Baseline <u>DCT</u>)	Indicates that this is a baseline DCT-based JPEG, and specifies the width, height., number of components, and component subsampling (e.g., 4:2:0)
SOF2	0xFF, 0xC2	variable size	Start Of Frame (Progressive DCT)	Indicates that this is a progressive DCT-based JPEG, and specifies the width, height, number of components, and component subsampling (e.g., 4:2:0).
DHT	0xFF, 0xC4	variable size	Define Huffman Table(s)	Specifies one or more Huffman tables.
DQT	0xFF, 0xDB	variable size	Define Quantization Table(s)	Specifies one or more quantization tables.
DRI	0xFF, 0xDD	4 bytes	Define Restart Interval	Specifies the interval between RSTn markers, in macroblocks. This marker is followed by two bytes indicating the fixed size so it can be treated like any other variable size segment.
SOS	0xFF, 0xDA	variable size	Start Of Scan	Begins a top-to-bottom scan of the image. In baseline DCT JPEG images, there is generally a single scan. Progressive DCT JPEG images usually contain multiple scans. This marker specifies which slice of data it will contain, and is immediately followed by entropycoded data.
RST <i>n</i>	0xFF, 0xD <i>n</i> (<i>n</i> =07)	none	Restart	Inserted every r macroblocks, where r is the restart interval set by a DRI marker. Not used if there was no DRI marker. The low 3 bits of the marker code cycle in value from 0 to 7.
APP <i>n</i>	0xFF, 0xEn	variable size	Application-specific	For example, an <u>Exif</u> JPEG file uses an APP1 marker to store metadata, laid out in a structure based closely on <u>TIFF</u> .
СОМ	0xFF, 0xFE	variable size	Comment	Contains a text comment.
EOI	0xFF, 0xD9	none	End Of Image	71

Matlab image processing function

```
Forward Discrete Cosine Transform:

Idct=dct2(im);
Inverse Discrete Cosine Transform:
im=idct2(Idct);
```

Image Compression Demo

http://insy.ewi.tudelft.nl/content/image-and-video-compression-learning-tool-vcdemo

