DTI 516 Multimedia Processing Chapter: 8

DCT

Dr. Paween Khoenkaw Digital Technology Innovation : Maejo University

Download slide @ http://www.drpaween.com

1

Fourier transform

The **Fourier transform** decomposes a <u>function</u> of time (a *signal*) into the frequencies that make it up

Jean-Baptiste Joseph Fourier

Jean-Baptiste Joseph Fourier

Fourier transform

The **Fourier transform** decomposes a <u>function</u> of time (a *signal*) into the frequencies that make it up

Frequency

Frequency

Frequency

Discrete Cosine Basis Function

Н,Н

L,H

Discrete Cosine Basis Function

Discrete Cosine Basis Function

Discrete Cosine Coefficient

Sum of cosine functions

Discrete Cosine Basis Function

Discrete Cosine Coefficient

Sum of cosine functions

Discrete Cosine Basis Function

Discrete Cosine Coefficient

Sum of cosine functions

Discrete Cosine Basis Function

Discrete Cosine Coefficient

Sum of cosine functions

8 pixels

8 x 8 pixels

A discrete cosine transform (DCT) expresses a finite sequence of data points in terms of a sum of cosine functions oscillating at different frequencies

Nasir Ahmed

Sum of cosine functions

Discrete Cosine Coefficient

Forward DCT Formula

$$B(r,c) = \alpha_r \alpha_c \sum_{m=0}^{R-1} \sum_{n=0}^{C-1} I(m,n) \cos \frac{\pi (2m+1)r}{2R} \cos \frac{\pi (2n+1)c}{2N}$$

$$\alpha_r = \begin{cases} \frac{1}{\sqrt{R}} ; r = 0 \\ \sqrt{\frac{2}{R}} ; 1 \le r \le R-1 \end{cases}$$

$$\alpha_c = \begin{cases} \frac{1}{\sqrt{C}} ; r \le 0 \\ \sqrt{\frac{2}{C}} ; 1 \le r \le C-1 \end{cases}$$

$$I \text{ is Image B is Transform image r is row R is image height c is column }$$

C is image width

$$B(r,c) = \alpha_r \alpha_c \sum_{m=0}^{R-1} \sum_{n=0}^{C-1} I(m,n) \cos \frac{\pi (2m+1)r}{2R} \cos \frac{\pi (2n+1)c}{2N}$$

$$\alpha_r = \begin{cases} \frac{1}{\sqrt{R}} ; r = 0 \\ \sqrt{\frac{2}{R}} ; 1 \le r \le R-1 \end{cases}$$

$$\frac{\frac{1}{2}}{\frac{3}{4}}$$

$$I = \begin{cases} \frac{1}{\sqrt{C}} ; c = 0 \\ \sqrt{\frac{2}{C}} ; 1 \le r \le C-1 \end{cases}$$

I is Image B is Transform image r is row R is image height c is column

 1
 2

 3
 4

I is Image B is Transform image r is row R is image height c is column C is image width

Forward DCT Formular

 $\alpha_r = \frac{1}{\sqrt{R}} = \frac{1}{\sqrt{2}} = 0.7071$ $\alpha_c = \frac{1}{\sqrt{C}} = \frac{1}{\sqrt{2}} = 0.7071$ $B(r,c) = \alpha_r \alpha_c \sum_{m=0}^{R-1} \sum_{n=0}^{C-1} I(m,n) \cos \frac{\pi (2m+1)r}{2R} + \cos \frac{\pi (2n+1)c}{2N}$

 1
 2

 3
 4

I is Image B is Transform image r is row R is image height c is column C is image width

$$\alpha_r = \frac{1}{\sqrt{R}} = \frac{1}{\sqrt{2}} = 0.7071$$

$$\alpha_c = \sqrt{\frac{2}{C}} = \sqrt{\frac{2}{2}} = 1$$

$$= 0.7071 \times 1 \\ \times \left(1 \cos\left(\frac{\pi(2 \times 0 + 1)0}{2 \times 2}\right) \cos\left(\frac{\pi(2 \times 0 + 1)1}{2 \times 2}\right) + 2\cos\left(\frac{\pi(2 \times 0 + 1)0}{2 \times 2}\right) \cos\left(\frac{\pi(2 \times 1 + 1)1}{2 \times 2}\right) \right)$$

P(0|1)

1 2 3 4

I is Image B is Transform image r is row R is image height c is column C is image width

$$\alpha_r = \sqrt{\frac{2}{R}} = \sqrt{\frac{2}{2}} = 1$$
$$\alpha_c = \frac{1}{\sqrt{C}} = \frac{1}{\sqrt{2}} = 0.7071$$

$$B(1,0) = 1 \times 0.707 \times \left(1\cos\left(\frac{\pi(2 \times 0 + 1)\mathbf{1}}{2 \times 2}\right)\cos\left(\frac{\pi(2 \times 0 + 1)\mathbf{0}}{2 \times 2}\right) + 2\cos\left(\frac{\pi(2 \times 0 + 1)\mathbf{1}}{2 \times 2}\right)\cos\left(\frac{\pi(2 \times 1 + 1)\mathbf{0}}{2 \times 2}\right)$$

21

I is Image B is Transform image r is row R is image height c is column C is image width

1	2
3	4
	l

$$\alpha_r = \sqrt{\frac{2}{R}} = \sqrt{\frac{2}{2}} = 1$$

$$\alpha_c = \sqrt{\frac{2}{C}} = \sqrt{\frac{2}{2}} = 1$$

$$B(1,1) = 1 \times 1$$

$$\times \left(1\cos\left(\frac{\pi(2\times0+1)\mathbf{1}}{2\times2}\right)\cos\left(\frac{\pi(2\times0+1)\mathbf{1}}{2\times2}\right) + 2\cos\left(\frac{\pi(2\times0+1)\mathbf{1}}{2\times2}\right)\cos\left(\frac{\pi(2\times1+1)\mathbf{1}}{2\times2}\right)\right)$$

Discrete Cosine Coefficient

Sum of cosine functions

Inverse Discrete Cosine Transform Formula

$$I(m,n) = \sum_{r=0}^{M-1} \sum_{c=0}^{N-1} \alpha_r \alpha_c B(r,c) \cos\left(\frac{\pi(2m+1)r}{2M}\right) \cos\left(\frac{\pi(2n+1)c}{2N}\right)$$
$$\alpha_r = \begin{cases} \frac{1}{\sqrt{M}} & ; r = 0\\ \sqrt{\frac{2}{M}} & ; 1 \le r \le M-1 \end{cases}$$
$$\alpha_c = \begin{cases} \frac{1}{\sqrt{N}} & ; c = 0\\ \sqrt{\frac{2}{N}} & ; 1 \le c \le N-1 \end{cases}$$
mimage

I is Image B is Transform imag r is row R is image height c is column

C is image width

Inverse Discrete Cosine Transform Formula

$$I(m,n) = \sum_{r=0}^{M-1} \sum_{c=0}^{N-1} \alpha_r \alpha_c B(r,c) \cos\left(\frac{\pi(2m+1)r}{2M}\right) \cos\left(\frac{\pi(2n+1)c}{2N}\right)$$

$$a_r = \begin{cases} \frac{1}{\sqrt{M}} & ; r = 0 \\ \sqrt{\frac{2}{M}} & ; 1 \le r \le M-1 \end{cases}$$

$$\alpha_c = \begin{cases} \frac{1}{\sqrt{N}} & ; c = 0 \\ \sqrt{\frac{2}{N}} & ; 1 \le c \le N-1 \end{cases}$$

I is Image B is Transform image r is row R is image height c is column C is image width

Precompute

$$\alpha_r = \begin{cases} \frac{1}{\sqrt{M}} = \frac{1}{\sqrt{2}} = 0.7071 \quad ; r = 0\\ \sqrt{\frac{2}{M}} = \sqrt{\frac{2}{2}} = 1 \; ; \; 1 \le r \le M - 1 \end{cases}$$

$$\alpha_c = \begin{cases} \frac{1}{\sqrt{N}} = \frac{1}{\sqrt{2}} = 0.7071 \quad ; \ c = 0\\ \sqrt{\frac{2}{N}} = \sqrt{\frac{2}{2}} = 1 \ ; \ 1 \le c \le N - 1 \end{cases}$$

$$I(m,n) = \sum_{r=0}^{M-1} \sum_{c=0}^{N-1} \alpha_r \alpha_c B(r,c) \cos\left(\frac{\pi(2m+1)}{2M}\right) r \cos\left(\frac{\pi(2n+1)}{2N}\right) c$$

I(<mark>0,0</mark>)

$$= \left(0.7071 \times 0.7071 \times 5 \times \cos\left(\frac{\pi(2 \times 0 + 1)0}{2 \times 2}\right) \times \cos\left(\frac{\pi(2 \times 0 + 1)0}{2 \times 2}\right)\right)$$
$$+ \left(0.7071 \times 1 \times -1 \times \cos\left(\frac{\pi(2 \times 0 + 1)0}{2 \times 2}\right) \times \cos\left(\frac{\pi(2 \times 0 + 1)1}{2 \times 2}\right)\right)$$
$$+ \left(1 \times 0.707 \times -2 \times \cos\left(\frac{\pi(2 \times 0 + 1)1}{2 \times 2}\right) \times \cos\left(\frac{\pi(2 \times 0 + 1)0}{2 \times 2}\right)\right)$$
$$+ \left(1 \times 1 \times 0 \times \cos\left(\frac{\pi(2 \times 0 + 1)1}{2 \times 2}\right) \times \cos\left(\frac{\pi(2 \times 0 + 1)1}{2 \times 2}\right)\right)$$

I(0,0)

 $= (0.7071 \times 0.7071 \times 5 \times 1 \times 1) + (0.7071 \times 1 \times -1 \times 1 \times 0.7071) + (1 \times 0.707 \times -2 \times 0.7071 \times 1) + (1 \times 1 \times 0 \times 0.7071 \times 0.7071)$

$$I(0,0) = (2.5) + (-0.5) + (-1) + (0) = 1$$

1	

$$I(0,1) = \left(0.7071 \times 0.7071 \times 5 \times \cos\left(\frac{\pi(2 \times 0 + 1)0}{2 \times 2}\right) \times \cos\left(\frac{\pi(2 \times 1 + 1)0}{2 \times 2}\right)\right) + \left(0.7071 \times 1 \times -1 \times \cos\left(\frac{\pi(2 \times 0 + 1)0}{2 \times 2}\right) \times \cos\left(\frac{\pi(2 \times 1 + 1)1}{2 \times 2}\right)\right) + \left(1 \times 0.707 \times -2 \times \cos\left(\frac{\pi(2 \times 0 + 1)1}{2 \times 2}\right) \times \cos\left(\frac{\pi(2 \times 1 + 1)0}{2 \times 2}\right)\right) + \left(1 \times 1 \times 0 \times \cos\left(\frac{\pi(2 \times 0 + 1)1}{2 \times 2}\right) \times \cos\left(\frac{\pi(2 \times 1 + 1)0}{2 \times 2}\right)\right)$$

I(0,1)

 $= (0.7071 \times 0.7071 \times 5 \times 1 \times 1) + (0.7071 \times 1 \times -1 \times 1 \times -0.7071)$ $+ (1 \times 0.707 \times -2 \times 0.7071 \times 1) + (1 \times 1 \times 0 \times 0.7071 \times -0.7071)$

I(0,1) = (2.5) + (0.5) + (-1) + (0) = 2

$$I(1,0) = \left(0.7071 \times 0.7071 \times 5 \times \cos\left(\frac{\pi(2 \times 1 + 1)0}{2 \times 2}\right) \times \cos\left(\frac{\pi(2 \times 0 + 1)0}{2 \times 2}\right) + \left(0.7071 \times 1 \times -1 \times \cos\left(\frac{\pi(2 \times 1 + 1)0}{2 \times 2}\right) \times \cos\left(\frac{\pi(2 \times 0 + 1)1}{2 \times 2}\right)\right) + \left(1 \times 0.707 \times -2 \times \cos\left(\frac{\pi(2 \times 1 + 1)1}{2 \times 2}\right) \times \cos\left(\frac{\pi(2 \times 0 + 1)0}{2 \times 2}\right)\right) + \left(1 \times 1 \times 0 \times \cos\left(\frac{\pi(2 \times 1 + 1)1}{2 \times 2}\right) \times \cos\left(\frac{\pi(2 \times 0 + 1)1}{2 \times 2}\right)\right)$$

 $I(1,0) = (0.7071 \times 0.7071 \times 5 \times 1 \times 1) + (0.7071 \times 1 \times -1 \times 1 \times 0.707) + (1 \times 0.707 \times -2 \times -0.7071 \times 1) + (1 \times 1 \times 0 \times -0.7071 \times 0.7071)$

I(1,0) = (2.5) + (-0.5) + (1) + (0) = 3

$$I(1,1) = \left(0.7071 \times 0.7071 \times 5 \times \cos\left(\frac{\pi(2 \times 1 + 1)0}{2 \times 2}\right) \times \cos\left(\frac{\pi(2 \times 1 + 1)0}{2 \times 2}\right)\right) + \left(0.7071 \times 1 \times -1 \times \cos\left(\frac{\pi(2 \times 1 + 1)0}{2 \times 2}\right) \times \cos\left(\frac{\pi(2 \times 1 + 1)1}{2 \times 2}\right)\right) + \left(1 \times 0.707 \times -2 \times \cos\left(\frac{\pi(2 \times 1 + 1)1}{2 \times 2}\right) \times \cos\left(\frac{\pi(2 \times 1 + 1)0}{2 \times 2}\right)\right) + \left(1 \times 1 \times 0 \times \cos\left(\frac{\pi(2 \times 1 + 1)1}{2 \times 2}\right) \times \cos\left(\frac{\pi(2 \times 1 + 1)1}{2 \times 2}\right)\right)$$

 $I(1,1) = (0.7071 \times 0.7071 \times 5 \times 1 \times 1) + (0.7071 \times 1 \times -1 \times 1 \times -0.707) + (1 \times 0.707 \times -2 \times -0.7071 \times 1) + (1 \times 1 \times 0 \times -0.7071 \times -0.7071)$

I(1,1) = (2.5) + (0.5) + (1) + (0) = 4

1	2
3	4

Relationship between image size and DCT coefficients

6

7

8

9

10

11 12 « -32.5421

18.3436

29.6503

13.9812

-7.5909

11.7445

25.7871

-16.1884

-21.9424

-4.4391

-2.3892

-9.7825

0.6717

40.1800

-7.3973

-11.1338

8.6983

-6.4520

63.1372

-10.5550

9.2177

6.5136

-7.8869

-0.9022

-48.1434

-33.8960

-2.0710

0.9377

9.2181

16.1135

11 x 11

Relationship between image size and DCT coefficients

52 x 52

	1	2	3	4	5
1	6.4495e+03	-520.7436	-151.5713	489.1371	450.5086
2	354.8647	383.0446	-286.6618	-161.3687	-98.7322
3	-35.5706	224.3982	-377.7081	447.3406	-304.5452
4	-79.8277	-107.2932	386.7337	-243.9519	-0.6625
5	-132.9977	116.0623	99.6430	102.9810	-10.1339
6	-47.2541	-3.3932	208.0734	105.5907	-247.0023
7	136.9033	-99.6564	157.7367	-121.9128	-91.8851

Relationship between image size and DCT coefficients

512 x 512

	1	2	3	4	5	
1	6.3510e+04	-5.2186e+03	-1.2174e+03	4.9412e+03	4.2037e+03	
2	3.5498e+03	3.8991e+03	-3.2492e+03	-1.2073e+03	-1.1665e+03	
3	-104.5352	1.5585e+03	-2.9924e+03	4.0129e+03	-2.8571e+03	
4	-852.1659	-873.8822	3.8690e+03	-2.8289e+03	618.8543	
5	-1.2477e+03	1.0509e+03	1.0615e+03	1.1741e+03	-131.7160	
6	-165.8589	-326.9890	2.5260e+03	253.7506	-2.2538e+03	
7	1.4370e+03	-1.0205e+03	1.2802e+03	-1.0940e+03	-724.0527	
8	1.7526e+03	-1.3310e+03	-833.1556	1.1272e+03	-232.883	
9	-222.0533	168.5836	39.9274	-332.9693	644.692	
10	243.1871	-729.5183	118.0543	-295.0197	978.3837	

Relationship between image frequency and DCT coefficients

Original Image

Recovered Image

Difference

Relationship between image frequency and DCT coefficients

Original Image

Recovered Image

Difference

Original Image

Recovered Image

Difference

Original Image

Recovered Image

Difference

Original Image

Recovered Image

Difference

Difference

Original Image

Recovered Image

Difference

Original Image

Recovered Image

Difference

Original Image

Recovered Image

Difference

	1	2	3	4
1	6.3510e+04	-5.2185e+03	-1.2172e+03	4.9413e+03
2	3.5497e+03	3.8986e+03	-3.2493e+03	-1.2075e+03
3	-104.6609	1.5583e+03	-2.9925e+03	4.0130e+03
4	-851.8232	-874.1121	3.8686e+03	-2.8288e+03
5	-1.2482e+03	1.0505e+03	1.0611e+03	1.1745e+03
6	-165.7130	-326.5807	2.5264e+03	253.8995
7	1.4371e+03	-1.0204e+03	1.2802e+03	-1.0941e+03
8	1.7531e+03	-1.3305e+03	-833.4106	1.1270e+03
9	-221.9198	168.6203	39.7324	-333.3642
10	243.2396	-729.7188	118.2280	-294.6010
11	-569.8203	529.1188	-532.0261	-46.5159

Original Image

Recovered Image

Difference

	1	2	3	4	5	б	7	8	9	10	11
1	1.3649e+03	-99.2052	-49.8237	91.8897	110.3587	-3,5995	-32.8883	30.8823	16.9340	-6.5352	2.0509
2	73.3255	67.5331	-26.4304	-56.3956	-12.1745	-3.9397	25.1227	-17.6125	20.8615	11.8741	3.7422
3	-25.5518	90.1374	-121.2469	98.0200	-47.1906	43.4739	75.3813	-38.7571	9.6894	13.6114	-3.3104
4	-17.1075	-23.5532	60.3729	-7.3428	-41.6396	62.7329	-40.2204	-10.7158	27.2102	-24.4389	-12.0919
5	-22.1086	15.7114	31.0801	1.0475	-1.9229	29.4013	-11.0035	-13.8581	1.8397	-8.1757	25.4932
6	-32.5421	25.7871	0.6717	63.1372	-48.1434	0.1742	-14.5857	61.4364	-11.9249	-9.5090	15.3389
7	18.3436	-16.1884	40.1800	-10.5550	-33.8960	-11.5371	13.7111	26.9295	-13.2509	23.5859	-25.6042
8	29.6503	-21.9424	-7.3973	9.2177	-2.0710	-2.3186	26.0117	-6.1949	-26.8234	7,2502	-0.7330
9	13.9812	-4.4391	-11.1338	6.5136	0.9377	1.4823	3.8832	-5.6331	-8.9524	1.9252	8.2897
10	-7.5909	-2.3892	8.6983	-7.8869	9.2181	-0.3284	-19.5435	-1.7107	7.5322	7.8304	-5.3475
11	11.7445	-9.7825	-6.4520	-0.9022	16.1135	-11.5351	-4.2073	14.3701	4.8269	-16.6809	-0.4980

Discrete Cosine Coefficient

Original Image

Recovered Image

Difference

	1	2	3	4	5	б	7	8	9	10	11
ſ	1.3649e+03	-99.2052	-49.8237	91.8897	110.3587	-3,5995	-32.8883	30.8823	16.9340	-6.5352	2.0509
2	H	67.533		CC -56.3956	-12.1745	-3.9397	25.1227	-17.6125	20.8615	11.8741	3.7422
3	-25.5518	90.1374	-121.2469	98.0200	-47.1906	43.4739	75.3813	-38.7571	9.6894	13.6114	-3.3104
4	-17.1075	-23.5532	60.3729	-7.3428	-41.6396	62.7329	-40.2204	-10.7158	27.2102	-24,4389	-12.0919
5	-22.1086	15.7114	31.0801	1.0475	-1.9229	29.4013	-11.0035	-13.8581	1.8397	-8.1757	25.4932
6	-32.5421	25.7871	0.6717	63.1372	-48.1434	0.1742	-14.5857	61.4364	-11.9249	-9.5090	15.3389
7	18.3436	-16.1884	40.1800	-10.5550	-33.8960	-11.5371	13.7111	26.9295	-13.2509	23.5859	-25.6042
8	29.6503	-21.9424	-7.3973	9.2177	-2.0710	-2.3186	26.0117	-6.1949	-26.8234	7,2502	-0.7330
9	13.9812	-4.4391	-11.1338	6.5136	0.9377	1.4823	3.8832	-5.6331	-8.9524	1.9252	8.2897
10	-7.5909	-2.3892	<mark>8.6983</mark>	-7.8869	9.2181	-0.3284	-19.5435	1.7 <mark>1</mark> 07	7.5322	7.8304	-52475
11	11.7445	-9.7825	-6.4520	-0.9022	16.1135	-11.5351	-4.2073	4.3701	4.8269	-16.6809	-0,4980

Discrete Cosine Coefficient

Forward Discrete Cosine Transform	Quantization
	Entropy encoding

Quantized DCT

Forward Discrete Cosine Transform	Quantization
	Entropy encoding

JPEG Image Compression Algorithm : Quantization Matrix

Quantization Table for: Photoshop - (Save As 12) The following matrix can be used to evaluate the JPEG compression quality of Photoshop's .

Chroma Subsampling: 1x1

	Quantization Table: Luminance											
1		1	1	1		1	2					
1	1	1	1	1	1	1	2					
1	1	1	1	1	1	2	2					
1	1	1	1	1	2	2	3					
1	1	1	1	2	2	3	3					
1	1	1	2	2	3	3	3					
1	1	2	2	3	3	3	3					
2	2	2	3	3	3	3	3					

	Quantization Table: Chrominance									
1	1	1	2	3	3	3	3			
1	1	1	2	3	3	3	3			
1	1	2	3	3	3	3	3			
2	2	3	3	3	3		3			
3	3	3	3	3	3		3			
3	3	3	3	3	3		3			
3	3	3	3	3	3		3			
3	3	3	3	3	3	3	3			

Quantization Table for: Photoshop - (Save As 04) The following matrix can be used to evaluate the JPEG compression quality of Photoshop's .

Chroma Subsampling: 2x2

	Quantization Table: Luminance								Qu	antizat	ion Tal	ble: Ch	romina	nce	
16	11	17	27	34	39	34	17	17	17	22	34	20	20	17	-
11	12	16	26	28	23	12	12	17	19	22	14	14	12	12	
17	16	21	28	23	12	12	12	22	22	14	14	12	12	12	
27	26	28	23	12	12	12	12	34	14	14	12	12	12	12	
34	28	23	12	12	12	12	12	20	14	12	12	12	12	12	
39	23	12	12	12	12	12	12	20	12	12	12	12	12	12	
34	12	12	12	12	12	12	12	17	12	12	12	12	12	12	
17	12	12	12	12	12	12	12	17	12	12	12	12	12	12	

Quantization Table for: Photoshop - (Save As 09)

The following matrix can be used to evaluate the JPEG compression quality of Photoshop's .

Chroma Subsampling: 1x1

	Quantization Table: Luminance											
4	3	4	7	9	11	14	17					
3	3	4	7	9	12	12	12					
4	4	5	9	12	12	12	12					
7	7	9	12	12	12	12	12					
9	9	12	12	12	12	12	12					
11	12	12	12	12	12	12	12					
14	12	12	12	12	12	12	12					
17	12	12	12	12	12	12	12					

	Quantization Table: Chrominance												
4	6	12	22	20	20	17	17						
6	8	12	14	14	12	12	12						
12	12	14	14	12	12	12	12						
22	14	14	12	12	12	12	12						
20	14	12	12	12	12	12	12						
20	12	12	12	12	12	12	12						
17	12	12	12	12	12	12	12						
17	12	12	12	12	12	12	12						

Quantization Table for: Photoshop - (Save As 00)

The following matrix can be used to evaluate the JPEG compression quality of Photoshop's .

Chroma Subsampling: 2x2

	Quantization Table: Luminance												
32	33	51	81	66	39	34	17						
33	36	48	47	28	23	12	12						
51	48	47	28	23	12	12	12						
81	47	28	23	12	12	12	12						
66	28	23	12	12	12	12	12						
39	23	12	12	12	12	12	12						
34	12	12	12	12	12	12	12						
17	12	12	12	12	12	12	12						

	Quantization Table: Chrominance												
34	51	52	34	20	20	17	17						
51	38	24	14	14	12	12	12						
52	24	14	14	12	12	12	12						
34	14	14	12	12	12	12	12						
20	14	12	12	12	12	12	12						
20	12	12	12	12	12	12	12						
17	12	12	12	12	12	12	12						
17	12	12	12	12	12	12	12						

JPEG Options	
Matte: None 🔹	ОК
Image Options	Cancel
Quality: 10 Maximum 🗘	Preview
small file large file	
Format Options Baseline ("Standard") Baseline Optimized Progressive Scans: 3 \$	

989184787483788497948181727578759689797475748085958679787471778110190828374707875998685807269768695838771737081789981858169687578

Reverse Discrete Cosine Transform

Dequantization

Entropy decoding

Reverse Discrete Cosine Transform

Dequantization

Entropy decoding

Reverse Discrete Cosine Transform

Dequantization

Entropy decoding

JPEG: image partition into 8x8 block

JPEG standard

- Joint effort with CCITT (International Telephone and Telegraph Consultative Committee, now ITU-T) Study Group VIII
- Work commenced in 1986
- International standard ISO/IEC 10918-1 and CCITT Rec. T.81 in 1992
- Widely used for image exchange, WWW, and digital photography
 - Motion-JPEG is de facto standard for digital video editing

Baseline JPEG coder

Common JPEG markers

Short name	Bytes	Payload	Name	Comments
SOI	0xFF, 0xD8	none	Start Of Image	
SOF0	0xFF, 0xC0	variable size	Start Of Frame (Baseline <u>DCT</u>)	Indicates that this is a baseline DCT-based JPEG, and specifies the width, height. , number of components, and component subsampling (e.g., 4:2:0)
SOF2	0xFF, 0xC2	variable size	Start Of Frame (Progressive DCT)	Indicates that this is a progressive DCT-based JPEG, and specifies the width, height, number of components, and component subsampling (e.g., 4:2:0).
DHT	0xFF, 0xC4	variable size	Define Huffman Table(s)	Specifies one or more Huffman tables.
DQT	0xFF, 0xDB	variable size	Define Quantization Table(s)	Specifies one or more quantization tables.
DRI	0xFF, 0xDD	4 bytes	Define Restart Interval	Specifies the interval between RST <i>n</i> markers, in macroblocks. This marker is followed by two bytes indicating the fixed size so it can be treated like any other variable size segment.
SOS	0xFF, 0xDA	variable size	Start Of Scan	Begins a top-to-bottom scan of the image. In baseline DCT JPEG images, there is generally a single scan. Progressive DCT JPEG images usually contain multiple scans. This marker specifies which slice of data it will contain, and is immediately followed by entropy- coded data.
RST <i>n</i>	0xFF, 0xDn(n=07)	none	Restart	Inserted every <i>r</i> macroblocks, where <i>r</i> is the restart interval set by a DRI marker. Not used if there was no DRI marker. The low 3 bits of the marker code cycle in value from 0 to 7.
APP <i>n</i>	OxFF, OxEn	variable size	Application-specific	For example, an <u>Exif</u> JPEG file uses an APP1 marker to store metadata, laid out in a structure based closely on <u>TIFF</u> .
СОМ	OxFF, OxFE	variable size	Comment	Contains a text comment.
EOI	0xFF, 0xD9	none	End Of Image	72
Matlab image processing function

Forward Discrete Cosine Transform: Idct=dct2(im); Inverse Discrete Cosine Transform: im=idct2(Idct);

Image Compression Demo

http://insy.ewi.tudelft.nl/content/image-and-video-compressionlearning-tool-vcdemo

