Introduction to mobile devices

CS 436 Software Development on Mobile

By Dr. Paween Khoenkaw

Welcome to the world of smart devices

http://www.rudebaguette.com/2014/02/13/mobile-smart-devices-set-drive-turnaround-frances-tech-device-market/

The fist telephone

March 10th 1876 see you . To my delight he came and declared That he had heard and understord what I said, I asked him to repeat the words - the mint He answered you said M. Watson - come here Meceiving Just I want to see you " We Then changed places and I listened at S while Watson read a few passages from a book into the brausmitting lack month piece M. It was certainly the case That articulate sounds proceeded from S. The effect was loud but indistinct and muffled . 1. The improved instrument shower in Fig. I was If I had read beforehand The passage given constructed this morning and tried this lovening . P is a brass pipe and W The platimum wire by W- Watson I should have recognized M the month piece and S The armatine of every word. Is it was I could not make out The sense - but an occasional The Receiving Instrument. M. Watson was stationed in one room word here and there was quite distinct. I made out to and "out" and further"; with the Receiving Instrument . He pressed one ear closely against S and closely his other and finally The sentence " Mr. Bell Do you ear with his hand. The Transmitting Instrument understand what I day? Do- you - un was placed in another room and the doors of der - stand - what - I - Day " came quite clearly and intelligitly. hosound both rooms were closed. Then should into M the following was audible when the armatuse S was resentence; "W" Watson - Come here - I want to noved -

Bell's March 10, 1876 laboratory notebook entry describing his first successful experiment with the telephone.

We make a phone call to a place

Mobile phone generations

O G The early mobile phones

Car phone service originated with the Bell System, and was first used in St. Louis on June 17, **1946**. The original equipment weighed 80 pounds (**36 kg**), and there were initially only **3** channels for all the users in the metropolitan area

The first hand-held mobile phone

Martin Cooper and DynaTAC

On April 3, **1973** Cooper and Mitchell demonstrated two working phones

Cooper dialed the number of his chief competitor Dr. Joel S. Engel, who was head of Bell Labs. "Joel, this is Marty. I'm calling you from a cell phone, a real handheld portable cell phone."

1G Cellular Phones

1979

NMT – Nordic Mobile Telephony

AMPS - Advanced Mobile Phone System

TACS – Total Access Communication System

ETACS – Total Access Communication System

- Analog System
- Low capacity
- Do not coverage long distance
- Not Secured

Connected PCs

Bulletin board system (early 80's to late 90's)

-		BBS	
IBRARY INFORMAT	ION BANKS		
LIB	Souborl	Popis	
MAIN	4	The Main LIB	
ABADEMO	5	Deno programl' (ABAKUS)	
ABATEXTY	11	Texty firmy ABAKUS	
ADALBERT	28	Interni knihovna Adalbert	
AMIFUN	25	AMIGA - Dema, hry a ostatni	
AMISCENA	11	AMIGA - Ceska scena	
AMISYS	119	AMIGA - Software pro system 1.3 - 4.0	
ANIMACE	14	Aninacní programy, atd	
ATARI	64	Utility a use pro ATARI ST, MegaST, Falcon	
RTM	394	Fonty ADOBE Type manager	
AUDIO	84	Hudebni programy a utility	
AUTHORS	99	Romany, povidky, fejetony, basne	
BBS	209	BBS software, pomocne utility.doc	
BBSCSK	5	BBS.CSK - Seznamy BBS v CR a SR (fecho)	
BBSMAN	8	BBS manaLer - ppgrade	
BORLAND	30	Patche, utility, seznany chyb, produkty	
BTRIEVE	3	NOVELL BIRIEVE, problemy, reseni, utility	
N)onstop. (Q)uit	-Konec nebo	(C)ontinue-Pokracuj?	
F9 for Connand?	, Home for	Status Capture Off	ANSI

,\$\$\$a`\$ 62_66∍2	\$\$\$\$	\$\$\$a	\$\$\$\$\$\$\$\$\$\$	\$\$\$\$\$\$\$\$\$	\$\$\$\$\$\$\$\$\$	\$\$ ²	, \$\$\$!	JS \$\$a\$\$\$
\$ 2\$\$	ŚŚŚa,	`z\$\$?	2\$\$\$\$\$	\$2:\$\$\$\$\$\$	`\$\$\$\$\$2		`²śś	- 44
2 25	i\$\$\$\$\$\$\$a	ι,	`2`	\$\$\$\$\$\$ i	2		\$²\$a	
a\$ \$,	:\$\$\$ ² \$\$\$\$	\$\$\$\$Sa,		:\$\$\$\$\$\$:		.,a.`	\$\$ \$\$	
i\$`i	\$\$\$a `2	`²`''\$\$\$	\$Sa,	\$\$\$\$SS i		afS\$ ²² S::	\$ \$i	,
:\$, \$i	\$\$\$a\$a		`'\$\$\$\$\$Sa,	a\$\$\$Siii	., af S\$\$ ²	''``,\$ai:	:\$\$:	,\$
i\$a\$	\$\$\$22 ''		`\$\$\$	\$L\$S ² i i\$\$	22.05	.a\$\$STi	:.\$ 2"	
\$\$\$:	`\$a\$\$\$\$\$	\$a .,a	S\$\$\$\$\$aS\$	\$\$\$aSi ² aa	, ² `.	²a,\$\$\$i:	:\$	
2\$:	2 \$\$\$S2	,aS\$\$\$\$	******	\$\$\$Si::::	ia, \$a	,.`²\$\$\$i:		
	i\$.`²\$\$\$	\$\$\$\$\$\$\$\$	199999999	\$\$Sii::ii	S\$\$\$Sa½\$	\$\$\$\$Sa\$\$i ²	i:	kHz <acid></acid>
,ş,	\$.:: "2	SSSz :	sssssssss	\$\$\$\$Si:::i	Széééééé	şşşş² '	_T:	
\$,\$,	i, ::.:	² i	sssssss ² s	\$\$Si::i::	i:`\$\$\$\$\$	²',asa	Şi	
, `\$,\$,	² a, :i:	: :\$	\$\$\$\$\$ ² \$\$\$	\$\$\$i²i:i:	i\$ 2'	,a\$\$\$\$	\$²	
\$\$,`\$ \$	^z a.	:. i\$	\$\$i\$\$\$fa`	'' ^z `aSii\$i	:i ,	a\$\$\$\$\$\$ ^z a ^z		
²\$\$, \$	⇒ ² a	. :\$\$	198899999	\$\$\$\$\$SSi:	i: a\$	22.552.		af ² "
2 \$	i. `a	i\$\$	şşzzzuzşş	\$S ²² \$Siii		a²`	.,a\$²`	,aa\$\$\$\$\$\$\$\$
ş, ,ş	Ş	a :\$\$ ^z		- ` ^z i	: ²	a, .a\$	z'``,aaŞ	\$\$\$\$\$\$\$\$\$\$\$\$\$
\$\$, \$i	: ,\$	_`∶i\$,		a,i		`\$,a\$ ² `,	assssss	SSSIIIIIIISS
S\$\$,\$\$: ,\$\$,	\$, \$\$\$	s,	200 ,ai:		² a\$\$	\$\$\$\$\$SSi	i::²''''''2:ii
iSi \$\$:	,\$'`\$	i\$_2\$	\$\$\$\$\$\$\$aaa	a\$\$STii:²		,\$\$\$\$\$	\$\$\$Si:2	'a, '²
:i ,\$:'	,\$′\$,	şş,	2 \$\$\$\$\$\$\$\$	\$\$\$\$`i :2		,\$\$\$\$\$\$\$	ŞŞSi:²	,\$\$\$a,
:' \$i'	,ş' `ş	², `²\$,	`'*SSS	S ^{zz} ‴a		\$\$\$\$\$\$\$	ŞSi::	,\$\$\$\$\$\$\$

9

Down of the internet

Digital data as analog audio

The era of laptop PC

Pager

Pager is a device that received the wireless broadcast digital message

Radio System

2G GSM Phone

2G GSM Phone

- GSM Global System for Mobile Communications
 - Digital voice communication
 - Coverage long distance
 - Globally Accepted (roaming)
 - Short Message
 - Secured
 - CSD (Circuit Switch Data) @9.6kbps

https://en.wikipedia.org/wiki/GSM

2.5G GSM Phone

- GSM **Global System** for Mobile Communications
 - Digital voice communication
 - Coverage long distance
 - Globally Accepted (roaming)
 - Short Message
 - Secured
 - Data Channel
 - GPRS (General Package Radio Service)@64kbps

GSM Chipset

MediaTek Broadcom Icera Infineon Qualcomm ST-Ericsson

GSM Chipset

SYSTEM ARCHITECTURE AD20msp410

The phone now have some features

		OMO Templates
		- SMS Templates
CAMERA		No
SOUND	Alert types	Vibration; Monophonic ringtones, composer
	Loudspeaker	No
	3.5mm jack	No
COMMS	WLAN	No
	Bluetooth	No
	GP\$	No
	Radio	No
	USB	
FEATURES	Messaging	SMS
	Browser	WAP
	Clock	Yes
	Alarm	Yes
	Games	4 - Tetris, Erix, E-maze, Ballpop
	Languages	24
	Java	No
		- Swatch Internet Time
		- Voice dial
		- Calculator
		- Stopwatch
		- Start-up shut-down shows
		- Profiles
		- Active flip
BATTERY		NIMH battery
	Stand-by	200 h
	Talk time	10 h
MISC	Colors	4 - Blue Whirl, Lime Twist, Silver Weave, Beige Harmony

Disclaimer. We can not guarantee that the information on this page is 100% correct. Read more

Digital baseband

Interactive Pager

Launched by RIM in 1996. It specialized in two-way messaging and had limited HTML access, though it was e-mail capable.

Internet on the move

Wireless Application Protocol (WAP) + General packet radio service (GPRS)

Mobile Programming Language

2.75G GSM Phone

- GSM **Global System** for Mobile Communications
 - Digital voice communication
 - Coverage long distance
 - Globally Accepted (roaming)
 - Short Message
 - Secured
 - Data Channel
 - GPRS (General Package Radio Service)
 - EDGE (Enhance Data rates for GSM Evolution)@170kpbs

2G CDMA Phone

- CDMA (Code-division multiple access)
- SSMA (spread-spectrum multiple access)

3G GSM Phone with Faster Data

2007

- UMTS (Universal Mobile Telecommunication System) @384kbps
- Video Calling

- 1Gbps for Stationary users
- 100Mbps for High mobility users (Bullet train)

PCs in the pocket

Personal Digital Assistant

Apple Newton MessagePad 100ManufacturerApple ComputerRelease date1993Discontinued1998Operating system Newton OSCPUARM 610 RISCWeight1.4 lb (0.64 kg) W/ Battery

Pda

-Motorola MC68328 -68000 Core -32-bit CISC microprocessors -UART -Touch screen

-Palm OS

PDA have no phone capability

iPhone

iPhone 1 2007

- Internet
- Application

3G GSM Phone with Faster Data

2007

- UMTS (Universal Mobile Telecommunication System) @384kbps
- Video Calling

- 1Gbps for Stationary users
- 100Mbps for High mobility users (Bullet train)

Android phone 2008

- Internet
- Application

3.5G GSM Phone with Faster Data

- HSDPA (High Speed Downlink Packet Access)@2Mbps

- HSUPA (High Speed Uplink Packet Access)@2Mbps

3.75G GSM Phone with Faster Data

- HSPA+ (Evolved High Speed Packet Access Plus)
- Downlink@42.2Mbps
- Uplink@22Mbps

3.9G GSM Phone with Faster Data 2009

4G LTE phone: Samsung Galaxy S Aviator Android 2.3 2012

- LTE (Long Term Evolution)
- 4G LTE
- Downlink @ 300Mbps
- Uplink @ 75Mbps

3G W-CDMA Phone

- W-CDMA Wideband Code Division Multiple Access
- CDMA2000
- EVDO (Evolution-Data Optimized)

4G Fast Data

In 2011, Thailand's Truemove-H launched a pre-4G HSPA+ network with nationwide availability.

- LTE (Long Term Evolution)
- 4G LTE
- LTE Advanced
- 4G Voice call
- Fall back to 3G for voice calling
- Downlink @1000Mbps
- Uplink @ 500Mbps

5G Fast Data + Low latency

1.Speed: 5G can offer download speeds up to 10 Gbps

2.Latency: 5G has much lower latency. This is crucial for applications like autonomous driving

3.Capacity: 5G can support a larger number of devices connected to the network simultaneously

4.Reliability: 5G networks are designed to be more reliable

THE FEATURE PHONE

Processor wars

MIPS

ARM

ATOM

CISC vs RISC

The first general-purpose CPU

Intel4004 1970 4bits Data width 2250 Transistors 46 Instructions 740kHz

The first general-purpose CPU

Intel4004 1970 4bits Data width 2250 Transistors 46 Instructions 740kHz

Intel 4004 Instructions Set						
INSTRUCTION	MNEMONIC	BINARY EQUIVALENT 1st byte 2nd byte		MODIFIERS		
No Operation	NOP	00000000	-	none		
Jump Conditional	JCN	0001CCCC	AAAAAAAA	condition, address		
Fetch Immediate	FIM	0010RRR0	DDDDDDDD	register pair, data		
Send Register Control	SRC	0010RRR1	-	register pair		
Fetch Indirect	FIN	0011RRR0	÷	register pair		
Jump Indirect	JIN	0011RRR1	T.	register pair		
Jump Uncoditional	JUN	0100AAAA	AAAAAAAA	address		
Jump to Subroutine	JMS	0101AAAA	AAAAAAAA	address		
Increment	INC	0110RRRR	÷	register		
Increment and Skip	ISZ	0111RRRR	AAAAAAAA	register, address		
Add	ADD	1000RRRR	-	register		
Subtract	SUB	1001RRRR	-	register		
Load	LD	1010RRRR	-	register		
Exchange	XCH	1011RRRR		register		
Branch Back and Load	BBL	1100DDDD	-	data		
Load Immediate	LDM	1101DDDD	-	data		
Write Main Memory	WRM	11100000		none		
Write RAM Port	WMP	11100001	-	none		
Write ROM Port	WRR	11100010	-	none		
Write Status Char 0	WR0	11100100	-	none		
Write Status Char 1	WR1	11100101	-	none		
Write Status Char 2	WR2	11100110	-	none		
Write Status Char 3	WR3	11100111	-	none		
Subtract Main Memory	SBM	11101000	-	none		
Read Main Memory	RDM	11101001	-	none		
Read ROM Port	RDR	11101010	-	none		
Add Main Memory	ADM	11101011	-	none		
Read Status Char 0	RD0	11101100	-	none		
Read Status Char 1	RD1	11101101	-	none		
Read Status Char 2	RD2	11101110	-	none		
Read Status Char 3	RD3	11101111	-	none		
Clear Both	CLB	11110000	-	none		
Clear Carry	CLC	11110001	-	none		
Increment Accumulator	IAC	11110010	-	none		
Complement Carry	CMC	11110011	-	none		
Complement	CMA	11110100		none		
Rotate Left	RAL	11110101	-	none		
Rotate Right	RAR	11110110	-	none		
Transfer Carry and Clear	тсс	11110111	-	none		
Decrement Accumulator	DAC	11111000	-	none		
Transfer Carry Subtract	TCS	11111001		none		
Set Carry	STC	11111010	-	none		
Decimal Adjust Accumulator	DAA	11111011		none		
Keybord Process	KBP	11111100	-	none		
Designate Command Line	DCL	11111101		none		
Keybord Process Designate Command Line	KBP DCL	11111100 11111101	÷	none none		

http://e4004.szyc.org/iset.html

The first general-purpose CPU

How to add data stored in memory

CPU

Read data
Execute add operation
Write data back

Slow and very difficult to program

Memory

Intel8086

Intel8086 1979 16 bits Data width 29000 Transistors **154 Instructions (mnemonic)** 5MHz – 10MHz

Intel8086

Intel8086 1979 16 bits Data width 29000 Transistors 154 Instructions (mnemonic) 5MHz – 10MHz

The operation of ADD mnemonic

ADD - Arithmetic Addition

mnemo	op	xx	xx	xx	xx	xx	sw	len	flags	
ADD	AL,ib	04	i0					В	2	oszap
ADD	AX,iw	05	i0	i1				W	3	oszap
ADD	rb,rmb	02	mr	d0	d1			В	2~4	oszap
ADD	rw,rmw	03	mr	d0	d1			W	2~4	oszap
ADD	rmb,ib	80	/0	d0	d1	i0		NB	3~5	oszap
ADD	rmw,iw	81	/0	d0	d1	i0	i1	NW	4~6	oszap
ADD	rmw,ib	83	/0	d0	d1	i0		ΕW	3~5	oszap
ADD	rmb,rb	00	mr	d0	d1			В	2~4	oszap
ADD	rmw,rw	01	mr	d0	d1			W	2~4	oszap

Usage

dest, src

ADD

Modifies flags

AF CF OF PF SF ZF

Adds "src" to "dest" and replacing the original contents of "dest". Both operands are binary.

Intel8086

The one instruction is doing many operation

The complex operation was done in a single instruction

Program is simple to write Fewer instruction = Program run faster

Complex Instruction Set Computer

x86 integer instructions [edit]

This is the full 8086/8088 instruction set of Intel. Most if not all of these instructions are available in 32-bit mode; they just operate on 32-bit registers (**eax**, **ebx**, etc.) and values instead of their 16-bit (**ax**, **bx**, etc.) counterparts. See also x86 assembly language for a quick tutorial for this processor family. The updated instruction set is also grouped according to architecture (i386, i486, i686) and more generally is referred to as x86 32 and x86 64 (also known as AMD64).

Original 8086/8088 instructions [edit]

Original 8086/8088 instruction set

Instruction +	Meaning 🔶	Notes +	Opcode 🗢
AAA	ASCII adjust AL after addition	used with unpacked binary coded decimal	0x37
AAD	ASCII adjust AX before division	8086/8088 datasheet documents only base 10 version of the AAD instruction (opcode 0xD5 0x0A), but any other base will work. Later Intel's documentation has the generic form too. NEC V20 and V30 (and possibly other NEC V-series CPUs) always use base 10, and ignore the argument, causing a number of incompatibilities	0xD5
AAM	ASCII adjust AX after multiplication	Only base 10 version (Operand is 0xA) is documented, see notes for AAD	0xD4
AAS	ASCII adjust AL after subtraction		0x3F
ADC	Add with carry	destination := destination + source + carry_flag	0x100x15, 0x80/20x83/2
ADD	Add	(1) r/m += r/imm; (2) r += m/imm;	0x000x05, 0x80/00x83/0
AND	Logical AND	(1) r/m &= r/imm; (2) r &= m/imm;	0x200x25, 0x80/40x83/4
CALL	Call procedure	push eip; eip points to the instruction directly after the call	0x9A, 0xE8, 0xFF/2, 0xFF/3
CBW	Convert byte to word		0x98

- Process is too complex
- Expensive
- More energy requirement
- Not all instruction is used

RISC Instruction Set Architecture Reduced Instruction Set Computer MIPS (Microprocessor without Interlocked Pipelined Stages) Processors 1985 John L. Hennessy

MIPS Instruction Reference

This is a description of the MIPS instruction set, their meanings, syntax, semantics, and bit encodings. The syntax given for each instruction refers to the assembly language syntax supported by the MIPS assembler. Hyphens in the encoding indicate "don't care" bits which are not considered when an instruction is being decoded.

General purpose registers (GPRs) are indicated with a dollar sign (\$). The words SWORD and UWORD refer to 32-bit signed and 32-bit unsigned data types, respectively

The manner in which the processor executes an instruction and advances its program counters is as follows

1. execute the instruction at PC 2. copy nPC to PC

```
3. add 4 or the branch offset to nPC
```

This behavior is indicated in the instruction specifications below. For brevity, the function advance pc (int) is used in many of the instruction descriptions. This function is defined as follows:

void advance_pc (SWORD offset) PC = nPC; nPC += offset;

Note: ALL arithmetic immediate values are sign-extended. After that, they are handled as signed or unsigned 32 bit numbers, depending upon the instruction. The only difference between signed and unsigned instructions is that signed instructions can generate an overflow exception and unsigned instructions can not

The instruction descriptions are given below:

ADD – Add (with overflow)

```
Description: Adds two registers and stores the result in a register
Operation: $d = $s + $t; advance_pc (4);
Syntax
            add $d $s $t
```

PC in 80's – 90's

Assembly / C

BASIC

Pros

CISC	RISC
Easy to program (in assembly) Fast memory access	Low-cost Low power consumption
Small code size	Single cycle instruction

Cons

CISC	RISC
Expensive High power consumption Instruction can take several cycles	Large code size Ram Bottleneck Hard to program (in assembly)
Who still program in Assembly ?	

Smart compiler can overcome this problem!

RISC Instruction Set Architecture

Acorn Computers Ltd.

BBC Micro

Archimedes 400/1 series computer

- The official Acorn RISC Machine project started in October 1983.
- VLSI Technology as the *silicon partner*
- The first samples of ARM silicon worked properly when first received and tested on 26 April 1985

Acorn RISC Machine

Advanced RISC Machine

Apple Newton was based on the ARM 610 RISC processor

RISC CPU

MIPS & ARM

ARM

MIPS

MIPS & ARM

MIPS (Microprocessor without Interlocked Pipeline Stages)	ARM (Advanced RISC Machines)
Introduced 1981	Introduced 1985
John L. Hennessy at Stanford University	ARM Holdings
Reduced Instruction Set Computer (RISC)	
32 Registers hard-wired-to-zero Register (\$0)	16 Registers Program Counter as a GPR
Compare only bew < , > need special instruction to set flag	cmp with condition flags (x86-style) If then else style
Printer, Set top box, Router	Cell phone, Tablet

ATOM

CISC, complex, expensive, need more energy X64, PC computable and it's run Windows!

GALAXY TAB

Samsung Galaxy Tab

Teardown Analysis

GALAXY TAB

GALAXY TAB

Samsung Galaxy Tab *iSuppli*° Teardown Analysis Main PCB, Bottom **AKM Semiconductor** AK8973B Atmel **Electronic Compass MXT224 Touchscreen Controller** ST Microelectronics L3G4200D Gyroscope 1 0000 7 6603 0000 SL09 Broadcom BCM4329HKUBG Bosch Sensortec Bluetooth/FM/WLAN **BMA020** Accelerometer **RF Micro Devices** Summit Microelectronics RF5515 SMB136 LNA **Battery Charger** Broadcom BCM4751IUB2G **GPS Receiver**

Conclusion

-Smart phone

- 2 CPU (BP,AP)
- 2 OS (Baseband RTOS, Application OS)

-Feature phone

-Application run on Baseband processor

-No Application operating system

-Generation

-1G Analog

-2G Digital

-3G Faster Digital

-4G Faster Digital without voice channel

-5G Faster Digital with Low latency