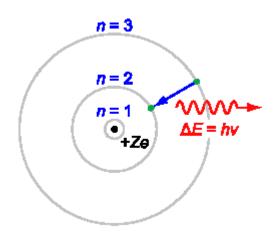
Introduction to Android Light Sensors

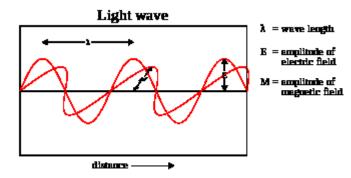
CS 436 Software Development on Mobile

Dr.Paween Khoenkaw

Department of Computer Science Maejo University

Light sensor

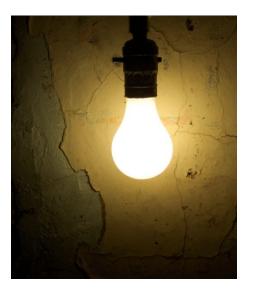

-What is light


- -How we measure light
- -How light sensor works
- -Application example

What is light

-Electromagnetic radiation that is visible to the human eye

-Can be wave or particle



How we measure light

Primary properties of light

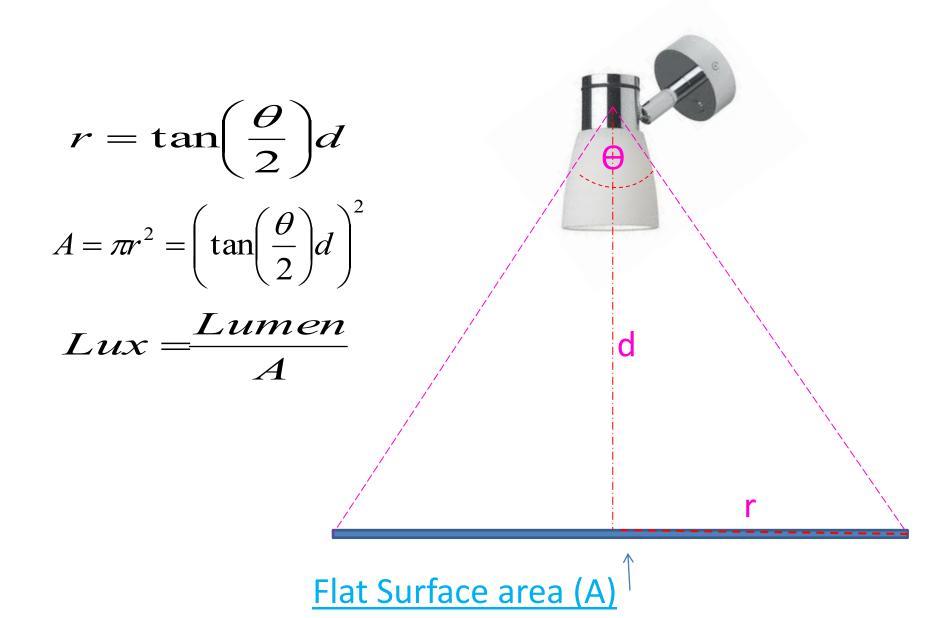
-Intensity
-Frequency
-Polarization
-Speed

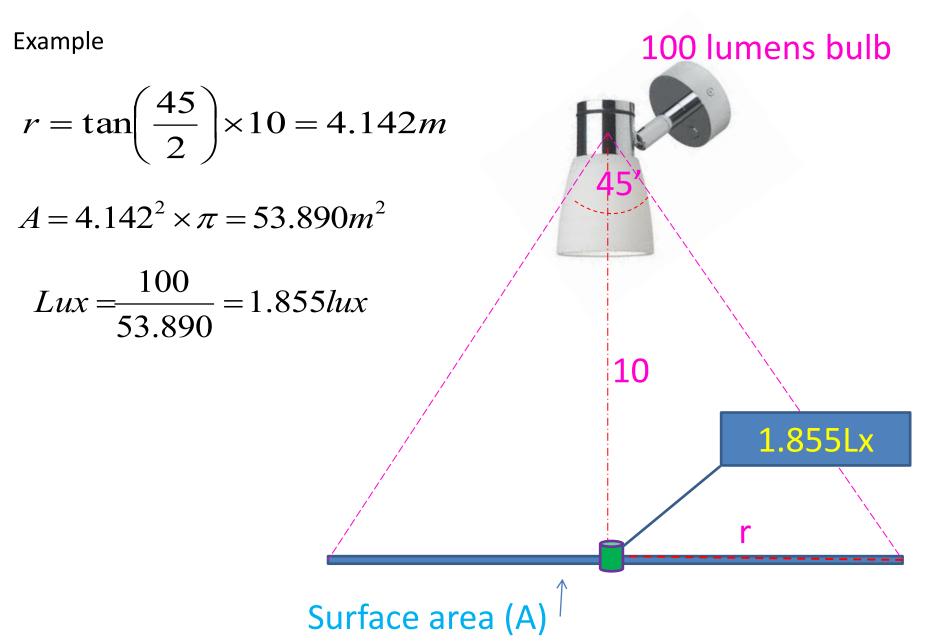
.

Candela = the total amount of light luminous energy rface of a sphere one foot in radius

solid angle of a sphere

Lumens = cd x sr Lumens measures total light output at the light source


Meters


ux= lm/m

pherical Surface Lux = Lumens/ m Lux is light Intensity on a surface from the

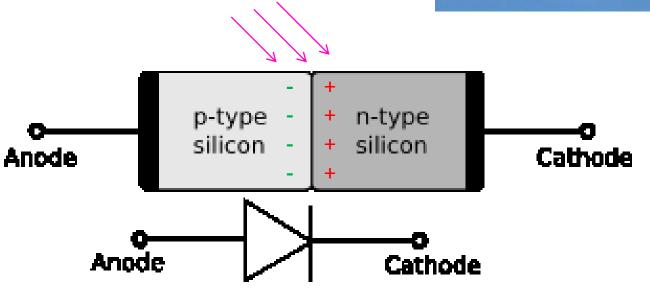
Measurements	Symbolized	Formula	Definitions	1 foot
Candela	cd	radiation emitted by 1/60 of a single square centimetre of platinum when it is at its melting point.	A common candle emits light with roughly 1 cd luminous intensity.	
Steradian	sr	$1 \text{ sr} = r^2 x 4 \pi$	Is a standard unit of measurement used to define a solid angle which	Distance
Lumens	lm	lm = cd x sr	The total amount of light that is produced by a light source in all directions.	vertex
Foot-candle	ft	ft = 1 Im x foot^2	Non-standard measure of illuminance	1 foot redus
Lux	lux	lux= lm x meter ²	Lux is a scale used to measure light intensity or the illumination that is produces by a light source at a distance.	cd s
Watts	w	w= volts x amps	Total power to operate	
Lumens per watt	lm/w	Lumens ÷ watts	A light engineering term for the measurement of the rate at which a lamp is able to convert electrical power (watts) to light (lumens)	

http://www.solarlightaustralia.com.au/2013/02/01/lumens-lux-and-watts/

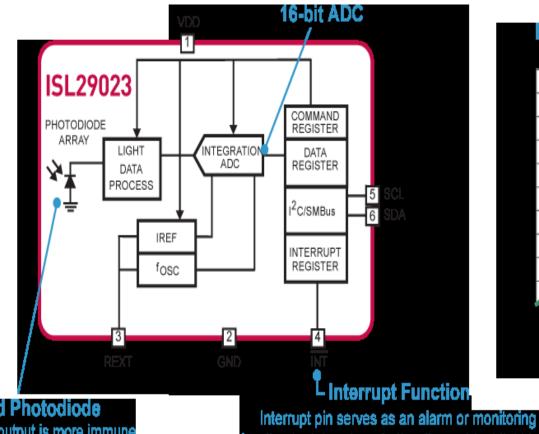
 $A = 2\pi d^2 \times \left(1 - \cos\frac{\theta}{2}\right)$ $Lux = \frac{Lumen}{A}$ Steradian Curve Surface area (A)

Light intensity Sensor

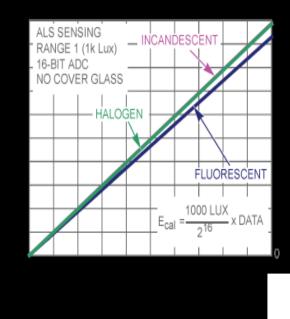
- -Detect light using photo-diode
- -Convert voltage to digital
- -Report output in <u>Lux</u>



Light intensity Sensor


Photo-diode

-Current flow in one direction -Operating in reverse bias mode



Light intensity Sensor

Excellent Low-Light Sensitivity

Integrated Photodiode ISL29023 digital output is more immune to noise than an analog output solution.

Interrupt pin serves as an alarm or monitoring function to determine whether the ambient light level exceeds a pre-select upper or lower threshold.

Light intensity Sensor The Application

- Automatic adjust display's backlight
- Power savings

Programming Light intensity Sensor

Get the sensor

SensorManager mSensorManager; Sensor mLight; mLight = mSensorManager.getDefaultSensor(Sensor.TYPE_LIGHT);

Get the sensor data

@Override

bublic void onSensorChanged(SensorEvent event) {
 if(event.sensor.getType()==Sensor.TYPE_LIGHT){
 edittext1.setText(sensorinfo+ "\nLight Sensor Reading:"
 + String.valueOf(event.values[0]) + " Luxes");

Programming Light intensity Sensor

Illuminance evaluator

Programming Light intensity Sensor

Activity	Illumination (lux, lumen/m ²)
Public areas with dark surroundings	20 - 50
Simple orientation for short visits	50 - 100
Working areas where visual tasks are only occasionally performed	100 - 150
Warehouses, Homes, Theaters, Archives	150
Easy Office Work, Classes	250
Normal Office Work, PC Work, Study Library, Groceries, Show Rooms, Laboratories	500
Supermarkets, Mechanical Workshops, Office Landscapes	750
Normal Drawing Work, Detailed Mechanical Workshops, Operation Theatres	1,000
Detailed Drawing Work, Very Detailed Mechanical Works	1500 - 2000
Performance of visual tasks of low contrast and very small size for prolonged periods of time	2000 - 5000
Performance of very prolonged and exacting visual tasks	5000 - 10000
Performance of very special visual tasks of extremely low contrast and small size	10000 - 20000

Thank you 😳